Novel Mannich Bases Derived from 2-Substituted Benzimidazole and (Thio)Hydantoin Moieties as Potent Histone Deacetylase 6 (HDAC6) Inhibitors

Reda El-Sayed Mansour1, Hanan Gaber Abdulwahab1*, Hend M. El-Sehrawi1

1Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
* Correspondence: hanangaber@azhar.edu.eg

Abstract: Novel Mannich bases derived from 2-substituted benzimidazole and (thio) hydantoin moieties, were synthesized as histone deacetylase 6 (HDAC6) inhibitors with potential cytotoxic activity. All derivatives were tested In vitro against HDAC6 enzyme. IR, 1H NMR, 13C NMR and mass spectroscopy confirmed the structure of synthesized compounds. All tested compounds significantly inhibited HDAC6 at nanomolar level. Compound 2c was the most potent presenting significant HDAC6 inhibitory activity (IC50 = 97.35 ± 5.7 nM), nearly equipotent to SAHA reference drug (IC50 = 91.73 ± 5.4 nM). In vitro cytotoxicity study was also carried out. Compound 2c exhibited potent cytotoxic activity against the tested cells (CCRF-CEM and MOLT-4) showing one digit micromolar IC50s. Compound 2c (IC50 = 3.66±0.22 uM) was 2-fold more active than SAHA reference drug (IC50 = 6.8±0.41 uM) against MOLT-4 cell line. Furthermore, a docking study demonstrated the ability of target Mannich bases to achieve an excellent fitting inside the binding site of HDAC6 enzyme.

Keywords: benzimidazole; (thio)hydantoin; HDAC6; Mannich bases; cytotoxicity.

Article history: Received 2021-06-01 Revised 2021-07-04 Accepted 2021-08-03

1. INTRODUCTION

Leukemia is a lethal type of cancer that leads to hematopoietic malignancies with relatively poor (20-40%) patients’ survival. Even though the exploration for various therapy, leukemia still the sixth leading cause for death in USA1. Recently, a lot of work has been directed to epigenetic changes that accompanied the development of hematopoietic malignancies². These changes play essential roles in regulating gene expression that can eventually induce oncogenic neoplasms³. Among these epigenetic changes is the modification of histone acetylation which can account for alteration of DNA accessibility and chromatin structure ⁴. Histone acetylation is regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes ⁵.

Among HDAC family, HDAC6 is a unique Zn²⁺-dependent enzyme which plays a vital role in microtubule dynamics and so affects cell proliferation and survival. In addition, HDAC6 acts on nonhistone substrates eg. Hsp90 and peroxiredoxin. HDAC6 has a direct effect on cellular activities including motility, growth of cells, migrations and adhesion⁶. Furthermore, HDAC6 is highly expressed during the development of tumors ⁷. It has also been reported that inhibition of HDAC6 resulted in apoptosis. Therefore, HDAC6 has been considered as an attractive target for designing potent anticancer candidates. Recently, several pan-HDAC inhibitors eg SAHA (suberoylanilide hydroxamic acid), were approved by FDA (Food and Drug Administration) for the management of hematological cancers⁹,¹⁰. HDAC6 inhibitors eg. tubastatin A¹¹ and citarinostat (ACY-241)¹² have also been reported. Structurally, HDAC inhibitors have common pharmacophoric features: cap-linker-zinc binding group (ZBG) (Figure 1).

Benzimidazole scaffold has attracted considerable attention for the discovery and development of antitumor candidates¹³,¹⁴. Several benzimidazole-containing drugs such as nocodazole and velipar...
have been clinically approved for cancer treatment15. Moreover, the HDAC inhibitory activity of benzimidazole derivatives has been reported by several research groups16 (Figure.2).

On the other hand, hydantoin and thiohydantoin derivatives are five membered heterocyclic compounds that attracted much attention in medicinal chemistry. Hydantoin-based compounds have been reported to exhibit considerable anticancer activities17. On the other hand, owing to their chelating properties, hydantoin and thiodyantoin have also been recognized to inhibit different metalloenzymes like matrix metalloproteinase18 and tryosinase19. For these observations, we assumed that hydantoin and thiohydantoin moieties might be considered as non-hydroxamate zinc chelating groups essential for HDAC inhibitory activity.

In the present study, novel Mannich bases derived from 2-substituted benzimidazole and (thio)hydantoin moieties were developed as HDAC6 inhibitors (Figure.3). Following the basic requirements for designing HDAC inhibitors, the benzimidazole nucleus is utilized as a capping moiety that interacts with the enzyme external surface. Whereas, the (thio) hydantoin moiety represents non-hydroxamate ZBG that can chelate Zn2+ metal at HDAC enzyme binding site. The benzimidazole and the (thio) hydantoin moieties were separated by a CH\textsubscript{2} linker. Different substituents (R= H, CH\textsubscript{3}, Ph) were also added to the 2-position of benzimidazole ring to discover substituent effect on HDAC inhibition. In this work, all derivatives were screened against HDAC6. In vitro cytotoxicity and docking study were also conducted.

2. METHODS

2.1. Chemistry

For general remarks, see supplementary file. The staring compounds 1a-c were prepared as illustrated in the literature reviews10,21. Synthesis of benzimidazole derivatives (1a-c)

A mixture of o-phenylenediamine (0.1 mol) and the corresponding acids, formic acid, acetic acid and benzoic acid (0.1 mol) in 4 N HCl (15 ml), was refluxed for 6-8 h. The reaction mixture was neutralized with 10% sodium hydroxide solution. The precipitated product was filtered, dried and crystallized from absolute ethanol. Yield 80-90%.

Synthesis of Mannich bases 2a-f:

A new series of Mannich bases were prepared according to reported procedures22-25. A mixture of benzimidazole derivatives 1a-c (2 mmol), and 38% formaldehyde solution (2 mmol) was added into the solution of hydantoin or thiohydantoin (2 mmol) in absolute ethanol (10 ml). The reaction mixture was refluxed for 3-4 h. The precipitated products were filtered, dried and crystallized from 99% ethanol.

5-((1H-benzo[d]imidazol-1-yl)methyl)imidazolidine-2,4-dione (2a)

Yield: (73.90%); m.p. 190-191 °C; IR (KBr) (cm-1): 3220, 3190 (2NH), 1708, 1698 (2C=O); 1H NMR (DMSO-d\textsubscript{6}) \(\delta\) (ppm): 3.97 (d, 1H, CH\textsubscript{2}, \(J = 3.9\) Hz), 4.07 (d, 1H, CH\textsubscript{2}, \(J = 3.9\) Hz), 4.72-4.76 (m, 1H, CH), 6.28 (s, 1H, NH, D\textsubscript{2}O exchangeable), 6.42 (s, 1H, NH, D\textsubscript{2}O exchangeable), 7.20-7.31 (m, 2H, benzimidazole-H), 7.72 (d, 1H, benzimidazole-H, \(J = 8\) Hz), 8.21 (d, 1H, benzimidazole-H, \(J = 7.6\) Hz), 8.33 (s, 1H, benzimidazole-H); 13C NMR (DMSO-d\textsubscript{6}) \(\delta\) (ppm): 48.25 (CH\textsubscript{2}), 60.79 (CH), 111.07, 119.97, 123.29, 123.32, 134.74, 144.70, 158.81 (N=C=O-N), 169.84, 174.36 (2C=O); MS m/z (%): 320.11 (M+, 8.17), 132.69 (1.37), 131.18 (2.27), 100.21 (100); Analysis % for C\textsubscript{13}H\textsubscript{11}NO\textsubscript{5}: (230) Calcd. (Found) C, 57.39 (57.13), H, 4.38 (4.09), N, 24.34 (23.99).

5-(((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)imidazolidine-2,4-dione (2b)

Yield: (60.93%); m.p. 90-92 °C; IR (KBr) (cm-1): 3317, 3300 (2NH), 1774, 1693 (2C=O); 1H NMR (DMSO-d\textsubscript{6}) \(\delta\) (ppm): 2.60 (s, 3H, CH\textsubscript{3}), 4.01-4.11 (m, 2H, CH\textsubscript{2}H\textsubscript{2}), 4.56-4.77 (m, 1H, CH), 7.16-7.24 (m, 2H, benzimidazole-H), 7.54-7.58 (m, 2H, benzimidazole-H), 8.11 (s, 1H, NH, D\textsubscript{2}O exchangeable), 10.92 (s, 1H, NH, D\textsubscript{2}O exchangeable); 13C NMR (DMSO-d\textsubscript{6}) \(\delta\) (ppm): 13.65 (CH\textsubscript{3}), 47.70 (CH\textsubscript{2}), 61.39 (CH), 110.47, 118.62, 122.62, 122.9, 134.86, 142.2, 158.83 (N=C=O-N), 169.84, 172.36 (2C=O); MS m/z (%): 244.22 (M+, 9.01), 241.62 (1.32), 130.42 (100); Analysis % for C\textsubscript{14}H\textsubscript{11}NO\textsubscript{5}: (244) Calcd. (Found) C, 59.01 (58.81), H, 4.95 (4.63), N, 22.94 (23.14).

5-((2-phenyl-1H-benzo[d]imidazol-1-yl)methyl)imidazolidine-2,4-dione (2c)

Yield: (75.60%); m.p. 280-282 °C; IR (KBr) (cm-1): 3209 (2NH), 1766, 1693 (2C=O); 1H NMR (DMSO-d\textsubscript{6}) \(\delta\) (ppm): 4.00-4.06 (m, 2H, CH\textsubscript{2}), 4.73-4.77 (m, 1H, CH), 7.27-7.31 (m, 2H, benzimidazole-H), 7.49-7.54 (t, 1H, phenyl-H), 7.56 (s, 1H, NH, D\textsubscript{2}O exchangeable), 7.57 (s, 1H, NH, D\textsubscript{2}O exchangeable), 7.58-7.69 (m, 2H, phenyl-H), 7.98 (d, 2H, benzimidazole-H, \(J = 8.4\) Hz), 8.24-8.27 (d, 2H, phenyl-H, \(J = 8\) Hz)); 13C NMR (DMSO-d\textsubscript{6}) \(\delta\) (ppm): 50.55 (CH\textsubscript{3}), 60.27 (CH), 115.34, 123.42, 127.30, 129.04, 129.10, 129.20, 129.28, 129.57, 129.75, 131.08, 131.23, 138.20, 151.15 (N=C=O-N), 167.82, 172.36 (2C=O); MS m/z (%): 306.11 (M+, 17.72), 268.82 (1.42), 64.25 (100); Analysis % for C\textsubscript{15}H\textsubscript{13}NO\textsubscript{5}: (306) Calcd. (Found) C, 66.66 (67.05), H, 4.61 (4.39), N, 18.29 (18.59).
5-((1H-benzo[d]imidazol-1-yl)methyl)-2-thioximidazolidin-4-one (2d)

Yield: (80.50%); m.p. 110 °C; IR (KBr) (cm⁻¹): 3143, 3101 (2NH), 1755, 1616 (2C=O); 1199 (C=S); ¹H NMR (DMSO-d₆) δ (ppm): 3.38-3.46 (m, 2H, CH₂), 4.55-4.99 (m, 1H, CH), 6.78 (s, 1H, NH, D₂O exchangeable), 7.22-7.31 (m, 2H, benzimidazole-H), 7.69 (d, 2H, benzimidazole-H, J = 8 Hz), 8.29 (s, 1H, benzimidazole-H), 10.01 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (DMSO-d₆) δ (ppm): 50.58 (CH₂), 67.80 (CH), 111.38, 119.82, 122.25, 122.89, 133.75, 144.11, 144.34 (N=C=N), 174.36 (C=O), 181.78 (C=S); MS m/z (%): 246.46 (M⁺, 12.94), 244.21 (4), 240.47 (4.40), 64.40(100); Analysis % for C₁₄H₁₂N₂O₂S (260) Calcd. (Found) C, 55.37 (55.69), H, 4.12 (4.75), N, 21.52 (21.14).

5-(2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-2-thioximidazolidin-4-one (2c)

Yield: (69.45%); m.p. 139-140 °C; IR (KBr) (cm⁻¹): 3120 (2NH), 1755, 1616 (2C=O), 1149 (C=S); ¹H NMR (DMSO-d₆) δ (ppm): 2.56 (s, 3H, CH₃), 3.61-3.82 (m, 2H, CH₂), 4.82-4.99 (m, 1H, CH), 6.66 (s, 1H, NH, D₂O exchangeable), 7.16-7.24 (m, 2H, benzimidazole-H), 7.53-7.57 (m, 2H, benzimidazole-H), 10.01 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (DMSO-d₆) δ (ppm): 13.74 (CH₃), 60.27 (CH₂), 66.35 (CH), 110.74, 118.32, 122.14, 122.65, 134.99, 142.02, 152.25 (N=C=N), 174.16 (C=O), 181.43 (C=S); MS m/z (%): 260.46 (M⁺, 3.32), 257.29 (3.66), 246.46 (100); Analysis % for C₁₆H₁₄N₂O₂S (280) Calcd. (Found) C, 53.57 (53.98), H, 4.09 (3.80), N, 22.75 (23.06).

5-(2-phenyl-1H-benzo[d]imidazol-1-yl)methyl)-2-thioximidazolidin-4-one (2f)

Yield: (59.30%); m.p. 158-160 °C; IR (KBr) (cm⁻¹): 3232, 3217 (2NH), 1755, 1681 (2C=O), 1180 (C=S); ¹H NMR (DMSO-d₆) δ (ppm): 3.56-3.83 (m, 2H, CH₂), 4.83-4.97 (m, 1H, CH), 6.37 (s, 1H, NH, D₂O exchangeable), 7.27-7.30 (m, 2H, benzimidazole-H), 7.49-7.68 (m, 3H, phenyl-H), 7.97 (d, 2H, benzimidazole-H, J = 7.4 Hz), 8.24 (d, 2H, phenyl-H, J = 7 Hz), 10.01 (s, 1H, NH, D₂O exchangeable); ¹³C NMR (DMSO-d₆) δ (ppm): 55.20 (CH₂), 69.60 (CH), 115.14, 124.08, 127.58, 127.88, 129.04, 129.34, 129.69, 129.73, 131.20, 131.69, 133.34, 136.88, 150.68 (N=C=N), 167.79 (C=O), 173.90 (C=S); MS m/z (%): 322.88 (M⁺, 6.11), 318.77(5.11), 59.15 (100); Analysis % for C₁₄H₁₂N₂O₂S (322) Calcd. (Found) C, 63.34 (62.98), H, 4.38 (4.75), N, 17.38 (17.67).

2.1.2. In vitro HDAC6 inhibition assay:

HDAC6 inhibitory activity was measured using BioVision’s HDAC6 inhibitor screening kit using SAHA as a reference drug²⁶. For details, see supplementary file.

2.1.3. Anticancer activity:

The anticancer activity of compound 2e against CCRF-CEM and MOLT-4 cancer cells was estimated using MTT-based assay kit, Sigma ²⁷-²⁹. For details, see supplementary file.

Figure 1. reported histone deacetylase inhibitors

Figure 2. a) Clinically approved benzimidazole-containing anticancer drugs.

b) Reported benzimidazole as HDAC inhibitors.
Novel Mannich Bases as Potent Histone Deacetylase 6 (HDAC6) Inhibitors

Figure 3. Design of target compounds as HDAC inhibitors.

Figure 4a. 2D and 3D of SAHA docked into the active site of HDAC6.

Figure 4b. 2D and 3D of compound 2c docked into the active site of HDAC6.

Figure 4c. The overlay of docked 2c (green color) and SAHA (red color) within the active site of HDAC6.
Table 1: HDAC6 inhibitory activity of target compounds.

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>Structure</th>
<th>IC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td></td>
<td>279.59± 16</td>
</tr>
<tr>
<td>2b</td>
<td></td>
<td>166.09± 9.7</td>
</tr>
<tr>
<td>2c</td>
<td></td>
<td>97.35± 5.7</td>
</tr>
<tr>
<td>2d</td>
<td></td>
<td>209.27± 12</td>
</tr>
<tr>
<td>2e</td>
<td></td>
<td>386.38± 23</td>
</tr>
<tr>
<td>2f</td>
<td></td>
<td>179.73± 11</td>
</tr>
</tbody>
</table>

Table 2: *In vitro* antitumor activity against two human leukemia cancer cell lines, CCRF-CEM and MOLT-4

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>Cytotoxicity</th>
<th>IC_{50} (uM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCRF-CEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLT-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td></td>
<td>9.67±0.58</td>
</tr>
<tr>
<td>SAHA</td>
<td></td>
<td>91.73±5.44</td>
</tr>
</tbody>
</table>

Table 3: Docking results for binding interaction of SAHA and 2c in HDAC6 binding site.
Novel Mannich Bases as Potent Histone Deacetylase 6 (HDAC6) Inhibitors

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>Docking score (Kcal/mol)</th>
<th>No. of H bonds</th>
<th>Amino acid residues (bond length Å)</th>
<th>Atom of compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAHA</td>
<td>- 6.64</td>
<td>2</td>
<td>Cys 584 (4.07)</td>
<td>NH of hydroxymate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tyr 745 (2.65)</td>
<td>C=O of hydroxymate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn (2.63)</td>
<td>O of C=O of hydroxymate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu 712</td>
<td>Phenyl capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ser 531</td>
<td>Phenyl capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe 583</td>
<td>Phenyl capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe 643</td>
<td>Phenyl capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>His 614</td>
<td>Phenyl capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pro 464</td>
<td>Phenyl capping group</td>
</tr>
<tr>
<td>2c</td>
<td>-4.68</td>
<td>3</td>
<td>His574 (2.89)</td>
<td>C=O of hydantoin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gly 582 (3.23)</td>
<td>C=O of hydantoin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gly 582 (3.36)</td>
<td>NH of hydantoin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe 643 (4.45)</td>
<td>CH2 of the linker moiety</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn (3.44)</td>
<td>O of hydantoin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leu 712</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ser 531</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe 583</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe 642</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phe 643</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>His 614</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>His 463</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pro 464</td>
<td>2-phenyl benzimidazole capping group</td>
</tr>
</tbody>
</table>

reaction of o-phenylenediamine with the appropriate carboxylic acid following reported procedure (Scheme 1).

It is worth noting that Mannich reaction has a great application in medicinal chemistry as Mannich bases have interesting biological activities eg. anticancer, antibacterial, antiviral and anti-inflammatory. Additionally, aminomethylation of drugs may improve their delivery in the human body and increase the hydrophilic properties through addition of a polar functional group. Following reported procedures, benzimidazoles 1a-c were reacted with hydantoin or thiohydantoin and formaldehyde solution to give Mannich bases 2a-f through aminoalkylation reaction (Scheme 1).

3.2 HDAC6 assay:

Mannich bases 2a-f, were evaluated against HDAC6 using SAHA as a reference standard (Table 1). All derivatives efficiently suppressed HDAC6 activity showing IC50 values in the nanomolar range (97.356 to 368.38 nM), relative to SAHA reference drug (IC50 = 91.732 ± 5.4 nM). Compound 2c was the most active against HDAC6 enzyme showing a significant HDAC6 inhibitory activity (IC50 = 97.356± 5.7 nM), nearly equipotent to SAHA (IC50 = 91.732 ± 5.4 nM). Analogues 2b, 2d and 2f revealed half potency of SAHA. While, compounds 2a and 2e were the least potent against HDAC6 enzyme.

In vitro anticancer activity:

As mentioned before, SAHA was approved by FDA for the treatment of various hematological cancers including acute myeloid leukemia and multiple myeloma, thus its effectiveness against leukemia is mainly assigned to HDAC inhibition. Thus, compound 2c; the most potent compound against HDAC6, was exposed to anticancer evaluation against two human leukemia cancer cells; CCRF-CEM and MOLT-4 using MTT assay (Table 2).

4. DISCUSSION

4.1 Chemistry

IR spectra for compounds 2a-c showed sharp absorption bands ranging from 1780 to 1616 cm⁻¹ correlated with the presence of C=O groups. Whereas, thiohydantoin derivatives 2d-f also clearly depicted C=S stretching at 1199, 1149 and 1180 cm⁻¹ respectively.

Moreover, the ¹H NMR analysis for 2a revealed two doublets at δ 3.97 and δ 4.07 ppm ascertaining the presence of CH₃ protons in addition to a multiplet in the range of δ 4.72- 4.76 ppm indicating CH proton. ¹H NMR spectra for 2b,c and 2d-f showed two multiplets in the range of δ 3.61-4.01and δ 4.56-4.82 ppm for CH₂ and CH protons, respectively.

https://aijpms.journals.ekb.eg/
Furthermore, ^{13}C NMR spectra of 2a-c and 2d-f exhibited two signals around δ 48.25 - δ 60.27 and δ 60.27 - δ 69.60 ppm, corresponding to the two aliphatic carbons CH$_2$ and CH, respectively.

4.2 HDAC6 assay:

4.2.1 Structure-activity relationship:

Like all reported HDAC inhibitors, the designed compounds have general characteristic structural features necessary for inhibiting HDAC6 enzymes. Herein, the pharmacophoric parameters (cap, linker and ZBG) represented by benzimidazole capping moiety bearing different substitution on 2-position, CH$_2$ linker and ZBG that contains either O or S atom for binding with Zn$^{2+}$ ion in the enzyme active site.

Regarding substituents on 2-position of benzimidazole ring, the addition of methyl group in compound 2b (IC$_{50}$=166.09± 9.7 nM) resulted in an apparent increase in HDAC6 inhibition, comparing to unsubstituted analogue 2a (IC$_{50}$ =279.59± 16 nM). Moreover, a 3-fold increase in HDAC6 inhibition was observed for phenyl benzimidazole derivative 2c (IC$_{50}$ = 97.35± 5.7nM). Similarly, for thiodyantoin compounds 2d-f, phenyl benzimidazole 2f was much more potent than its unsubstituted (2d) and methyl (2e) analogues.

It is worth mentioning that the type of atom (X= O, S) on ZBG has an effective role in HDAC6 inhibitory activity of title compounds. It was noted that the hydantoin derivatives 2a,e (X=O) were more potent than their corresponding thiodyantoin analogues 2d-f (X=S).

4.3 In vitro anticancer activity:

Compound 2c exhibited potent cytotoxic activity against the two tested cell lines showing one-digit micromolar IC$_{50}$. Noticeably, compound 2c (IC$_{50}$ = 3.66±0.22 uM) was 2-fold more active than SAHA reference drug (IC$_{50}$ = 6.8±0.41 uM) against MOLT-4 cell line. In addition, compound 2c revealed half potency of SAHA against CCRF-CEM cells with IC$_{50}$ of 9.67±0.58 and 3.83±0.23 uM, respectively. It was also noted that MOLT-4 cell line was 2-fold more sensitive to compound 2c than CCRF-CEM cell line.

4.4 Docking study:

In light of the well-established knowledge of the pharmacophoric parameters (cap, linker and ZBG) that are essential for HDAC6 inhibitory activity, a docking simulation was performed to clarify the interaction of the most promising compound (2c) with HDAC6. The molecular docking study was carried out using MOE 2014.0901 in HDAC6 isoenzyme that is co-crystallized with SAHA (PDB code: 5EEI). As speculated, compound 2c was approached to the narrow channel of the binding site and chelated with Zn$^{2+}$ ion at the bottom of catalytic site of HDAC6 (Fig 4a-e). In addition, compound 2c formed three hydrogen bonds with the side chain residue His 574 and the backbone residue Gly 582 (Table 3).

Furthermore, the 2-phenyl benzimidazole capping group formed additional hydrophobic contacts with important residues within the active pocket of HDAC6, including Leu 712, Ser 531, Phe 583, Phe 642, Phe 643, His 614, His 463 and Pro 464 that could contribute to significant improvement in compound activity. Accordingly, the removal or replacement of 2-phenyl benzimidazole with 2-methyl benzimidazole induces a great drop in HDAC6 inhibitory activity. This illustrates the important role of phenyl group in benzimidazole capping moiety. Moreover, CH$_2$ moiety of the linker was able to form an arene-H interaction with Phe 643. The obtained binding mode is observably matched with the pervious SAR study and could be considered as a valid explanation for the potent HDAC6 inhibition provoked by compound 2c.

5. CONCLUSIONS

New 2-substituted benzimidazole (thio)hydantoin Mannich bases were synthesized as HDAC6 inhibitors. All derivatives inhibited HDAC6 at nanomolar level. Compound 2c was the most potent and displayed HDAC6 inhibition equal to SAHA. In addition, 2c was 2-fold more active than SAHA against MOLT-4 leukemia cells.

Funding statement: This work is not funded.

Conflict of interest: The authors declare no conflict of interest.

Authors consent of publication: This paper is published under the full approval of authors.

Author Contribution: All authors had full access to all the information and took responsibility for data integrity and data analysis accuracy. Authors H.S and H.G designed the study. Author R.M performed the experimental work. Authors H.G and R.M wrote the manuscript. Author H.S supervised the work and revised the whole manuscript. The final manuscript was read and accepted by all the contributors.

List of Abbreviations: SAHA (suberoylanilide hydroxamic acid), FDA (Food and Drug Administration); HDAC6 (histone deacetylase 6), ZBG (zinc binding group).

https://aijpms.journals.ekb.eg/
REFERENCES

https://aijpms.journals.ekb.eg/

