Prevalence of tick-borne viruses from ticks breeding on camels imported to Egypt during the period from January 2019 to April 2021

Abeer K. Abdulall 1, Ali M. Zaki 2, Fatma Rasslan 1 and Hager A. Bendary 1*

1 Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11765, Egypt
2 Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
* Correspondence: dr.hagerbendary@gmail.com

Article history: Received 2022-03-07 Revised 2022-03-29 Accepted 2022-04-07

Abstract: Ticks show a vital role in the extent of diseases such as viral infection. Tick-borne viruses (TBVs) are a broad category with various genetic features transported by ticks. Specific TBVs are well-known for producing serious infections with high fatality ratios in humans and livestock, whereas others may cause community-health dangers that we don't yet understand. So, we aimed to detect TBVs isolated from ticks breeding on camels imported to Egypt during the period from January 2019 to April 2021. Throughout our study time, 27732 hard ticks were gathered from camels imported to Egypt to detect the existence of some medically important TBVs. Ticks were divided into pools (1385) each pool containing about 20 ticks. After that, tick pools were tested for the existence of Crimean–Congo hemorrhagic fever virus (CCHFV), Dugbe virus (DUGV), Phleboviruses, Alkhunma hemorrhagic fever virus (AHFV), and Thogoto virus (THOV) via real-time reverse transcription PCR (rRT-PCR) and nested RT-PCR. Three genera, Hyalomma (n = 25000 ticks; 90.1%), Rhipecephalus (n = 1236 ticks; 4.5%) and Amblyomma (n = 1496 ticks; 5.4%) were detected. The molecular analysis of both RT-PCR results showed that the CCHFV and AHFV were detected in 25/ 1385 tick pools (1.8%) and 14/1385 tick pools (1.01%), respectively. Herein, we indicated the presence of CCHFV and AHFV in Egypt and demonstrated the possibility of TB-dissemination of the virus. Additionally, further analysis on ticks and human samples are now recommended in epidemiological studies within the Egyptian land.

Keywords: Crimean-Congo Hemorrhagic fever; Alkhunma hemorrhagic fever; Nested RT-PCR; Real-time reverse transcription PCR; Egypt.

This is an open access article distributed under the CC BY-NC-ND license https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

Ticks thrive in a wide range of environments, from the driest to the most humid. Tick populations are growing, and tick-borne diseases (TBD) are considered more prevalent, drawing the attention of a broader range of public health professionals. Argasidae, or soft ticks, and Ixodidae, or the hard ticks, are the two primary families. The Ixodidae family is classified into seven genera. Amblyomma (Am), Haemaphysalis (H), Hyalomma (Hy), Rhipecephalus (R), Ixodes (I), and Dermacentor (D) are the most common genera. The Ixodid genus Hyalomma alone causes massive deficits in camel and other livestock products in the North Africa and Middle East region. Ticks are important arthropods that convey a broad range of pathogens, including viruses, to both individuals and animals. The viruses transferred by ticks are called tick-borne viruses (TBVs).

TBVs include a heterogeneous group of vertebrate viruses categorized into one DNA viral family, Asfarviridae, 8 RNA viral families: Reoviridae, Flaviviridae, Orthomyxoviridae, Rhabdoviridae, Nairoviridae, Phenuiviridae, Peribunyaviridae, and Nymaviridae. Nearly 25% of TBVs are closely related to infection.

In the Nairoviridae family, Orthonairovirus is a genus containing at least 35 viruses grouped into 7 serogroups. Orthonairoviruses are viruses that have a community health influence and are related to serious human disorders (e.g., Crimean–Congo hemorrhagic fever virus (CCHFV)) and a moderate human pathogen that are antigenically and...
Tick-borne viruses Prevalence

genetically related to CCHFV (e.g., *Dugbe viruses* (DUGV)) \(^\text{10}^\)\(^\text{10}\). The most well-known and investigated nairovirus is CCHFV, causing acute febrile illness with severe hemorrhage in humans recognized as Crimean–Congo hemorrhagic fever (CCHF) \(^\text{11}^\)\(^\text{11}\).

CCHF is a TBD that is broadly found throughout Africa, Asia, and Europe \(^\text{12}^\)\(^\text{12}\) while DUGV has a much smaller geographical distribution although it's one of the key prevalent TBVs in Africa \(^\text{13}^\)\(^\text{13}\). CCHFV was discovered in 1944 in the earlier Soviet Union's Crimea region and named 'Crimean hemorrhagic fever'. Subsequently, in 1956, it was detected in the Belgian Congo under the name 'Congo virus,' and in 1969, both names were assembled as Crimean–Congo hemorrhagic fever (CCHF) \(^\text{14}^\)\(^\text{14}\). On the other hand, DUGV was discovered in 1964 in Nigeria \(^\text{4}^\)\(^\text{4}\) and it was called after the Ibadan area where the prototype strain was discovered \(^\text{15}^\)\(^\text{15}\). Ticks of the *Hyalomma* spp. were established as the reservoir and natural vector of CCHFV \(^\text{12}^\)\(^\text{12}\) *Am. variegatum*, *Hv. truncatatum* and *R. appendiculatus* were identified as vectors for DUGV. Tick bites are the most common route for DUGV \(^\text{16}^\)\(^\text{16}\) and CCHFV to spread, although CCHFV can be also spread by contact with contaminated organs or blood from livestock \(^\text{17}^\)\(^\text{17}\). After being bitten by infested ticks, a range of wild and domestic animals, for example, camels, sheep, hares, cattle, and goats, operate as ensured hosts \(^\text{14}^\)\(^\text{14}\). CCHFV has been found as an extremely infective virus for individuals revealing a death ratio of 5-30%, according to most reports \(^\text{18}^\)\(^\text{18}\). CCHFV infection in humans can cause asymptomatic, mild, or severe illness \(^\text{19}^\)\(^\text{19}\) whereas humans infected with DUGV can suffer from a mild febrile sickness. Only one case was evaluated for high fever, encephalitis, and prolonged thrombocytopenia \(^\text{10}^\)\(^\text{10}\). To verify the existence of CCHFV in *Hyalomma* ticks, viral antigen, nucleotides amplification, and/or nucleic acid amplification tests combined with proteomics could all be employed \(^\text{19}^\)\(^\text{19}\). However, for the detection of DUGV, a conventional reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) have been established \(^\text{20}^\)\(^\text{20}\).

The *Phenuiviridae* family is divided into 4 genera, only the genus *Phlebovirus*, which includes a large group of virus members transmitted by ticks and was previously identified as Tick-borne phleboviruses (TBPVs) \(^\text{6}^\)\(^\text{6}\). *Phleboviruses* are typically found in the New World's tropics and the Old World's half-dry and pleasant zones, such as the Mediterranean, North Africa, and central and western Asia \(^\text{21}^\)\(^\text{21}\). Until the recent appearance of severe fever with thrombocytopenia syndrome virus (SFTSV) in China and the Heartland virus (HRTV) in the USA, TBPVs were widely ignored as causal means of human disorder \(^\text{22}^\)\(^\text{22}\), \(^\text{23}^\)\(^\text{23}\). The HRTV is directly associated with the SFTSV and shows a 60–70% similarity with it \(^\text{6}^\)\(^\text{6}\), \(^\text{24}^\)\(^\text{24}\). Other *phleboviruses* with genetic similarities to SFTSV and HRTV were recently separated from ticks in several world regions \(^\text{25}^\)\(^\text{25}\). SFTS patients suffer from fever, neurological abnormalities, gastrointestinal symptoms, thrombocytopenia, muscle complaints, multiple organ failure, and coagulopathy, with a 10 to 30% fatality rate \(^\text{24}^\)\(^\text{24}\). The SFTS, the Bhanja, and the Uukuniemi are the three genetic groups of TBPVs \(^\text{26}^\)\(^\text{26}\), \(^\text{27}^\)\(^\text{27}\). Development of primers that target conserved regions of the L segment RNA of all TBPVs can be used to identify *phleboviruses* using RT-PCR technology \(^\text{22}^\)\(^\text{22}\).

Alkhumra hemorrhagic fever virus (AHFV), another TBV, is categorized under the tick-borne encephalitis group of the *Flavivirus* genus in the Flaviviridae family \(^\text{28}^\)\(^\text{28}\). It was firstly separated in the Alkhumra area of Jeddah, Saudi Arabia, in 1994–1995 from six patients. It is found across Saudi Arabia, with isolated instances along the Sudan-Egypt border \(^\text{29}^\)\(^\text{29}\), \(^\text{30}^\)\(^\text{30}\). It can be spread through tick bites from *Hy. dromedarii*, or via contact with animals or raw products from animals (often camels and sheep) bitten by infested ticks \(^\text{31}^\)\(^\text{31}\). The virus can also be transmitted by unpasteurized or contaminated milk from camels, as well as through skin wounds infected with the blood or bodily fluids of an infected sheep \(^\text{28}^\)\(^\text{28}\). According to reports, up to 25% of people who contract the virus die \(^\text{31}^\)\(^\text{31}\). Patients infected with AHFV have symptoms like influenza, but the disorder can continue to serious hemorrhagic and central nervous system (CNS) presentations \(^\text{32}^\)\(^\text{32}\). In the early laboratory diagnosis of AHFV, both molecular and immunological techniques have been used \(^\text{28}^\)\(^\text{28}\).

In the Orthomyxoviridae family, TBVs are represented by two suggested genera, *Quarjavirus* and genus *Thogotovirus* \(^\text{6}^\)\(^\text{6}\). *Thogotoviruses* are distinct from other representatives of this family in that they are transferred by ticks and are found in a wide range of mammalian species, including rodents, cattle, camels, and sheep \(^\text{33}^\)\(^\text{33}\). The associates of the genus *Thogotovirus* are arboviruses transferred by ticks that infect humans and livestock in Europe, Africa, and Asia \(^\text{34}^\)\(^\text{34}\). *Thogo* virus (THOV) is the classified species of genera *Thogotovirus*, and it was recognized and separated from *Rhipicephalus* spp. ticks in Kenya and Sicily \(^\text{6}^\)\(^\text{6}\), \(^\text{12}^\)\(^\text{12}\), from *Am. variegatum*.

https://aijpmus.journals.ekb.eg/
in Nigeria, and from *Hyalomma* spp. ticks in both Nigeria and Egypt \(^3^5, 3^6\). The patients who attracted *Thogotovirus* infections developed a febrile illness that was frequently accompanied by neurological symptoms. Both individuals’ illness development was marked by severe respiratory complications and liver damage \(^3^3\).

This study was performed to detect the occurrence of CCHFV, DUGV, TBPV's, AHFV, and THOV in ticks isolated from camels imported to Egypt during the period from January 2019 to April 2021.

2. MATERIALS AND METHODS

2.1. Collection and Processing of Ticks

A total of 27732 hard ticks were gathered from imported camels to Egyptian land from January 2019 to April 2021. Ticks were derived from various body parts of camels slaughtered in the Toukh slaughterhouse (Qalyubia). Fine curved-tip forceps were used for the collection of samples very carefully to prevent their destruction. Ticks then had been collected in a glass container with pores for Oxygen entrance. The collection date and country were typed on labels for their corresponding containers. Then ticks were transported to the laboratory and morphologically categorized into species level. Consequently, ticks were divided into pools each containing about 20 hard ticks. In order to minimize additional cross-contamination from animal pelts, each individual pool was washed double times with sterilized H\(_2\)O, flushed once with ethanol (70%, v/v), and then rinsed a couple of times with Minimum Essential Medium (MEM; Sigma-Aldrich, St. Louis, MO) that contains antibiotic-antifungal mixture (GIBCO-BRL; New York, USA). The tick pools then were grinded by a sterilized mortar and pestle, with 2 mL MEM including 2% antibiotic-antifungal mix, 15% fetal bovine serum, and 2% l-glutamine (Biochrome KG; Berlin, Germany). The homogenates were clarified via centrifugation at a low-speed rate (5,000 rpm) for 10 minutes using a swing-out rotor (Hermle, Germany) and supernatants were separated then preserved at -70 °C up to RNA extraction step \(^1^3, 3^7, 3^8\).

2.2. RNA Extraction

An aliquot of supernatant (140 µL) was extracted for viral RNA using the QIAamp® Viral RNA Mini, Cat No. 52904 (Qiagen, Germany) according to the producer’s guidelines. The extracted RNA was then stored at -70 °C until used for virus detection.

2.3. Amplification of Viral Genetic Material

Qualitative detection of DUGV and THOV were performed using the conventional PCR and real-time reverse transcription PCR (rRT-PCR), while recognition of *Phlebovirus*, CCHFV, and AHFV were performed by the conventional PCR followed by nested PCR and rRT-PCR. The primers used in this study were synthesized from Invitrogen by Thermo Fisher Scientific. These primers were previously mentioned in other studies as shown in Table 1. Positive and negative control were included in all reactions. The sensitivity of the non-nested RT-PCR test was 100 copies per reaction while nested RT-PCR was 10 copies per reaction \(^4^1\). The specificity of each assay was 100 % as no cross-reactivity occur as positive control give positive signs while no signs were observed with negative control.

2.3.1. Conventional and Nested PCR

We used Qiagen One-Step RT-PCR kit (Qiagen, Germany) Cat No. (210212) for PCR reaction using the manufacturer’s instruction. An aliquot of 10µL extracted RNA was pipetted into each singular PCR tube. The total reaction volume was 50µL and the thermal cycling settings were mentioned in Supplementary Table 1.

After that, amplification of the first PCR product of *Phlebovirus*, CCHFV, and AHFV by means of nested RT-PCR using Promega Go Taq G2 master mix (Cat No. M7833, Promega, Germany) using the cycle conditions described in Supplementary Table 2 was done. Nested PCR was performed in a 50µL reaction with 2-µL of first PCR product using the primers previously described in Table 1. The PCR product was detected by electrophoresis (Biometre, Germany) in 2% agarose gel to visualize specific amplified products by comparing them with standard molecular Weight marker of 100 base pairs (DNA ladder). CCHFV positive samples show bands opposite to 260 bp, while AHFV positive samples yielded a product of 208 bp.

2.3.2. Real-Time Reverse Transcription PCR

Total extracted RNA of CCHFV, DUGV, AHFV, Phleboviruses, and THOV were tested using rRT-PCR assay. The primers used in this study were mentioned in other studies as shown in Table 1. This assay was done in triplicate using 48-well plates. The GoTaq Probe 1-Step RT-qPCR System (Cat No.
Tick-borne viruses Prevalence

A6120, Promega, Germany) was used for CCHFV, AHFV and DUGV, while GoTaq® 2-Step RT-qPCR System (Cat No. A6010, Promega, Germany) was chosen for THOV and Phleboviruses.

Table 1. Primer used in this study for detection of Dugbe virus (DUGV), Thogoto virus (THOV), Phleboviruses, Crimean–Congo hemorrhagic fever virus (CCHFV), and Alkhumra hemorrhagic fever virus (AHFV).

<table>
<thead>
<tr>
<th>Primer used in conventional PCR</th>
<th>Primer & probe</th>
<th>Ref.</th>
</tr>
</thead>
</table>
| **Dugbe virus** | **Forward**: TGCAACAACCTGGATGTGTGA
| | **Reverse**: TCTCAAACCAAACGTGGCAG | 600 |
| | **Forward**: AGCAGCGCCACCTTATTGCT | 500 |
| | **Reverse**: TCCCTCTGCACTATGCAGTA | 38 |
| | **Product size** | 39 |
| **Thogoto virus** | **Forward**: AGCAGCGCCACCTTATTGCT | 500 |
| | **Reverse**: TCCCTCTGCACTATGCAGTA | 38 |
| | **Gene** | 39 |
| | **Primer (5ꞌ - 3ꞌ)** | **Ref.** |
| **Alkhumra Hemorrhagic Fever Virus** | **outer forward**: TGGAAACCCACACCGGTGACT
| | **outer reverse**: ATGCACACTCATCGAGTTGCG | 400 |
| | **inner forward**: CCCACAGCAATCGAAAAACGCAGTC
| | **inner reverse**: GCCCATACACAGGTGCACATGAC | 208 |
| | **Crimean–Congo Haemorrhagic Fever Virus**
| | **outer forward**: CCHFF2: 5ꞌ-TGGGACACCTTCACAAACTC-3ꞌ,
| | **outer reverse**: CCHFF3: 5ꞌ-GAATGTGCATGGGTAGCTC-3ꞌ,
| | **inner forward**: CCHFFR3: 5ꞌ-GACAAACTTCCCTGCAAC-3ꞌ,
| | **inner reverse**: CCHFFR2a: 5ꞌ-GACATACAAATTTCACCAGG-3ꞌ,
| | **inner reverse**: CCHFFR2b: 5ꞌ-GACATTACAATTTGCCAGG-3ꞌ,
| **Phlebovirus** | **NPhlebo1+: 5ꞌ-2047ATGGARGGITTTGTIWSICIICC-2069-3ꞌ,
| | **NPhlebo1-: 5ꞌ-2000AARTTRCTIATCWCYTITARITGC-22573ꞌ,
| | **NPhlebo2+: 5ꞌ-2296TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| | **NPhlebo2-: 5ꞌ-2012ATGGARGGITTTGTIWSICIICC-2033-3ꞌ,
| | **NPhlebo2+: 5ꞌ-GAATGTGCATGGGTAGCTC-3ꞌ,
| | **NPhlebo2-: 5ꞌ-GAATGTGCATGGGTAGCTC-3ꞌ,
| | **NPhlebo1+: 5ꞌ-2047ATGGARGGITTTGTIWSICIICC-2069-3ꞌ,
| | **NPhlebo1-: 5ꞌ-2000AARTTRCTIATCWCYTITARITGC-22573ꞌ,
| | **NPhlebo2+: 5ꞌ-2012ATGGARGGITTTGTIWSICIICC-2064-3ꞌ,
| | **NPhlebo2-: 5ꞌ-2296TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| | **NPhlebo2+: 5ꞌ-GAATGTGCATGGGTAGCTC-3ꞌ,
| | **NPhlebo2-: 5ꞌ-GAATGTGCATGGGTAGCTC-3ꞌ,
| | **NPhlebo1+: 5ꞌ-2047ATGGARGGITTTGTIWSICIICC-2069-3ꞌ,
| | **NPhlebo1-: 5ꞌ-2000AARTTRCTIATCWCYTITARITGC-22573ꞌ,
| | **NPhlebo2+: 5ꞌ-2012ATGGARGGITTTGTIWSICIICC-2064-3ꞌ,
| | **NPhlebo2-: 5ꞌ-2296TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| **Crimean–Congo Haemorrhagic Fever Virus** | **Forward**: RWCF: 5ꞌCAAGGGGTACCAAGAAAATGAAGAAGGC3ꞌ
| | **Reverse**: RWCR: 5ꞌGCCACAGGGATTGTTCCAAAGCAGAC3ꞌ | 12 |
| | **probe** | **Ref.** |
| | **SE01**: 5ꞌ-FAM-ATCTACATGCACCCCTGTCTTGGTACCA-TAMRA3ꞌ | 12 |
| | **SE03**: 5ꞌ-FAM-ATTTACATGACCCCTGGCTTTACCA-TAMRA3ꞌ | 12 |
| | **SE0A**: 5ꞌ-FAM-CACCCTTCTCCCCACTTCATTGGAGT-TAMRA3ꞌ | 12 |
| **Demlavirus** | **Forward**: F-DUGV: 5ꞌ-CCTGGCTCAACGAGTTGAAGCT3ꞌ
| | **Reverse**: R-DUGV: 5ꞌ-AGAAGAGAATTGGACAAAGTG3ꞌ | 20 |
| | **probe** | **Ref.** |
| | **S-DUGV**: 5ꞌ-GACAAGAGGACCAAAATAGCA3ꞌ | 3 |
| **Alkhumra Hemorrhagic Fever Virus** | **Forward**: AHFV S1: 5ꞌ-GTGAGTGGCGCTTTGTTTGTA3ꞌ | 550 |
| | **Reverse**: AHFV R: 5ꞌ-CCCGTTCTATGGCTGACGGGACT3ꞌ | 550 |
| | **probe** | **Ref.** |
| | **TBV TM**: FAMACAGCGTTTAG1GAGACACAGACACAGCGCTGGA-3ꞌ | 550 |
| **Phlebovirus** | **Forward**: NPhlebo2+: 5ꞌ-2074ATGGARGGITTTGTIWSICIICC-2093-3ꞌ,
| | **Reverse**: NPhlebo2-: 5ꞌ-2313TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| **Thogoto virus** | **Forward**: NPhlebo2+: 5ꞌ-2074ATGGARGGITTTGTIWSICIICC-2093-3ꞌ,
| | **Reverse**: NPhlebo2-: 5ꞌ-2313TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| **Phlebovirus** | **Forward**: NPhlebo2+: 5ꞌ-2074ATGGARGGITTTGTIWSICIICC-2093-3ꞌ,
| | **Reverse**: NPhlebo2-: 5ꞌ-2313TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| **Phlebovirus** | **Forward**: NPhlebo2+: 5ꞌ-2074ATGGARGGITTTGTIWSICIICC-2093-3ꞌ,
| | **Reverse**: NPhlebo2-: 5ꞌ-2313TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,
| **Phlebovirus** | **Forward**: NPhlebo2+: 5ꞌ-2074ATGGARGGITTTGTIWSICIICC-2093-3ꞌ,
| | **Reverse**: NPhlebo2-: 5ꞌ-2313TCYTCYTRTTYTRTTYTTRARRTARCC-2296-3ꞌ,

*A*CCHF-F2 & CCHF-F2C: outer forward - CCHF-R3: outer reverse - CCHFF3 & CCHF-F3C: inner forward - CCHF-R2a & CCHF-R2b: inner reverse
*NPhlebo1+: outer forward - NPhlebo1-: outer reverse - NPhlebo2+: inner forward - NPhlebo2-: inner reverse

https://aijpms.journals.ekb.eg/
2.3.2.1. Detection of CCHFV, AHFV, and DUGV
GoTaq Probe 1-Step RT-qPCR System had been used. A small lique of 5μL of sample and 25μL reaction run were used on the Applied Biosystems StepOne™ Real-Time PCR System (Thermo Scientific, Waltham, MA, USA). The reaction was performed as mentioned in Supplementary Table 3. The fluorescence output data were managed and measured after each elongation step. The positive and negative controls were involved in all reactions.

2.3.2.2. Detection of THOV and Phleboviruses
GoTaq® 2-Step RT-qPCR System was used. Synthesize the cDNA as described by the manufacturer using the reaction conditions (follow Supplementary Table 4). A 10μl cDNA template was used in an optimized total reaction volume of 50μL using the Applied Biosystems StepOne™ Real-Time PCR System (Thermo Scientific, Waltham, MA, USA) program for standard or fast qPCR. Standard conditions are listed in Supplementary Table 5. The fluorescence data were assembled and measured after each elongation step. The fluorescence output data were analyzed as previously described. The positive and negative controls were involved in all reactions.

3. RESULTS
3.1. Recognition of Tick
Throughout this work duration, a collective count of 27732 hard ticks were collected from imported camels came from various countries in Africa (Ethiopia, Somalia, Kenya, and Sudan), which were recognized using a stereomicroscope. Three genera, *Hyalomma* (n = 25000 ticks; 90.1%), *Rhipicephalus* (n = 1236 ticks; 4.5%), and *Amblyomma* (n = 1496 ticks; 5.4%) were detected. Only *Hyalomma* spp. were found to be the most abundant genera with most dominant two species that were noted to infest camels. Amongst, the highly abundant tick species was *Hy. dromedarii* (n = 16750/27732; 60.4%), followed by *Hy. rufipes* (n = 8250/27732; 29.7%). Ticks were categorized into 1385 pools, comprising around 20 ticks, by animal source, size, species, and collection date. The count of tick species and their dissemination based on animal sources are represented in Table 2. Ticks collected during this study period were organized in Table 3.

<table>
<thead>
<tr>
<th>Animal Source</th>
<th>No. of Ticks (Pools)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyalomma</td>
<td></td>
</tr>
<tr>
<td>Hy. dromedarii</td>
<td>3387 (169)</td>
</tr>
<tr>
<td>Hyalomma</td>
<td></td>
</tr>
<tr>
<td>Hy. rufipes</td>
<td>1426 (71)</td>
</tr>
<tr>
<td>Rhipicephalus</td>
<td>309(15)</td>
</tr>
<tr>
<td>Amblyomma</td>
<td>371(19)</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>4141 (207)</td>
</tr>
<tr>
<td>Rhipicephalus</td>
<td>2574 (128)</td>
</tr>
<tr>
<td>Amblyomma</td>
<td>347(17)</td>
</tr>
<tr>
<td>Somalia</td>
<td>3859 (193)</td>
</tr>
<tr>
<td>Hyalomma</td>
<td>1718 (86)</td>
</tr>
<tr>
<td>Amblyomma</td>
<td>410(21)</td>
</tr>
<tr>
<td>Kenya</td>
<td>5363 (268)</td>
</tr>
<tr>
<td>Rhipicephalus</td>
<td>2532 (126)</td>
</tr>
<tr>
<td>Amblyomma</td>
<td>368(18)</td>
</tr>
<tr>
<td>Sudan</td>
<td>Total 16750 (837)</td>
</tr>
<tr>
<td>Rhipicephalus</td>
<td>8250 (411)</td>
</tr>
<tr>
<td>Amblyomma</td>
<td>1496 (75)</td>
</tr>
</tbody>
</table>

Table 2. Distribution of tick species fitting to the animal sources.

Table 3. Number of ticks isolated from camels imported to Egypt during the study period.
3.2. Virus Detection

Ticks’ pools herein were investigated using conventional PCR and/or nested RT-PCR and rRT-PCR to identify the viral genomic material. By investing in PCR-based assays, we noticed that the DUGV, Phlebovirus, and THOV were not detected in any tick pools. However, the analysis of the two RT-PCR products showed that CCHFV and AHFV were identified in 25/1385 tick pools (1.8%) and 14/1385 tick pools (1.01%), respectively (Figures 1 &2). Positive control indicated positive amplification signs, but no signs were noticed in the negative one.

Regarding CCHFV, we found that 12 out of 581 tick pools (2.1%), 9 of 737 (1.22%), and 4 of 67 (5.97%) were detected positive during 2019, 2020, and 2021, respectively. Amongst the CCHFV-positive pools, 16/25 pools (64%) of Hy. dromedarii, 8/352 pools during 2019 (2.27%), 6/442 pools during 2020 (1.35%) and 2/43 pools during 2021 (4.65%). Among Hy. rufipes pools, 9/25 pools (36%) were detected positive for the viral genetic material, 4/168 pools during 2019 (2.38%), 3/226 pools during 2020 (1.32%), and 2/17 pools during 2021 (11.76%). The 25 positively detected tick pools were collected from camels brought from Sudan (16 pools), Somalia (7 pools), and Ethiopia (2 pools), as depicted in Table 4.

Table 4. Results of Crimean-Congo hemorrhagic fever virus detection by nested and real-time RT-PCR in tick pools.

<table>
<thead>
<tr>
<th>Animal Source</th>
<th>Nested RT-PCR</th>
<th>Real time RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hy. dromedarii</td>
<td>Hy. rufipes</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Somalia</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Kenya</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sudan</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 1. A) Amplification of the S segment of the Crimean-Congo hemorrhagic fever virus genome via nested RT-PCR indicating the DNA bands with 260 base pairs (bp) from infested ticks and positive control (Pc). W negative control; Pc positive control; samples No. S1, S2, S4, S6, S10, S11, S12, S14, S16, S17, S18, S19, S20, S23, and S25 were positive Hy. dromedarii; S3, S5, S7, S8, S9, S13, S15, S21, S22, and S24 were positive Hy. rufipes. B) Qualitative real-time RT-PCR for Crimean-Congo hemorrhagic fever virus explaining Pc and W controls, and positive samples separated from infested ticks.
Regarding AHFV, 14 pools were infested with viral genome, 8 of 581 tick pools (1.37%) and 6 of 737 (0.81%) were detected positive during 2019 and 2020, respectively, while nothing was detected during 2021. Amongst the AHFV positive pools, 11/14 pools (78.57%) of *Hy. dromedarii*, 6/352 pools during 2019 (1.7%), and 5/442 pools during 2020 (1.13%). Among *Hy. rufipes*, 3/14 pools (21.43%) were positive, only 1/168 pools during 2019 (0.59%), and 2/226 pools during 2020 (0.88%). The 14 positively detected pools for ticks were gathered from camels imported from Sudan (10 pools), Somalia (3 pools), and Ethiopia (1 pool) (Shown in Table 5).

Table 5. Results of *Alkhumra hemorrhagic fever virus* detection by nested and real-time RT-PCR in tick pools.

<table>
<thead>
<tr>
<th>Animal Source</th>
<th>Nested RT-PCR</th>
<th>Real-time RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hy. dromedarii</td>
<td>Hy. rufipes</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Somalia</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Kenya</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sudan</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>
4. DISCUSSION

Ticks produce negative effects on individual and animal health via infecting and transmission of a broad variety of pathogens, involving viral, bacterial, and protozoal infections. Viruses form the main community of pathogens transferred by ticks. The vast majority of TBVs of human importance are transferred by hard ticks. Thus, the recognition of TBVs in vectors offers a gate to avoid disease dissemination in extreme-risk abattoir employees.

Herein, ticks were collected from camels (imported from Somalia, Ethiopia, Kenya, and Sudan) and evaluated for the presence of CCHFV, DUGV, Phleboviruses, AHFV, and THOV. Most dromedary camels, which are traded in the Middle East, are raised up in Eastern countries in Africa, mainly in, Somalia, Ethiopia, Kenya, and Sudan.

Three genera, *Hyalomma*, *Rhipicephalus* and *Amblyomma* were detected in this study. We discovered *Hy. dromedarii* as the key common species infesting camels (60.4%), followed by *Hy. rufipes* (29.7%), *Amblyomma* (5.4%), and *Rhipicephalus* (4.5%), agreeing with the results of Getange et al. (2021) in Kenya, Kaaboub et al. (2021) in Algeria, Bala et al. (2018) in Sudan, Champout et al. (2016) in Iran, and Chisholm et al. (2012) in Egypt. On the other hand, Al-Deeb and Muzaffar (2020) in the UAE, Issa et al. (2017) in Somalia, and Moshaferinia and Moghadams in Iran (2015) found that *Hy. dromedarii* was the predominant tick species while no *Hy. rufipes* was detected during their study. In contrast, Zhang et al. (2021) in Kenya found that *Hy. rufipes* was the most detected species and Elias et al. (2020) in Ethiopia detect that *Rhipicephalus* was the most predominant species. *Hyalomma* species are reported to be the crucial tick species attacking camels in previously mentioned countries. The results emphasize the hidden impact of environment and provincial circumstances on indicate ecosystem as the dry environment outfits *Hyalomma* ticks. The genera *Hyalomma*, and *Rhipicephalus* comprise the highly valuable ixodid ticks infecting animals. *Hyalomma* types were noticed on camels and cows.

The approach of using different methods of PCR assays to detect TBVs was adopted, making this study one of the most important attempts performed in Egypt.

Both nested PCR and rRT-PCR were utilized for the recognition of phleboviruses in the current study. Both methods revealed that phleboviruses were not detected in any tick pool. In contrast, López et al. (2020) in Colombia found that 5/229 pools were positive using conventional PCR and rRT-PCR techniques. Also, Souza et al. (2018) in Brazil analyzed six groups of *R. microplus* ticks and Lihan tick virus (Phlebovirus) was detected in 5 of 6 groups of ticks using a metagenomic approach with high-throughput sequencing. This finding may be attributed to the collection of ticks from different hosts (bovines, equines, and dogs) and/or inability of used PCR assays to detect all phleboviruses. The methodology also used by Souza and his coworker was different and it is the main reason for conflict.

DUGV was initially separated in 1964 at Dugbe, Nigeria, from *Am. variegatum*. It's one of the crucial predominant TBVs in countries within Africa, and it is sorted often as a prevalent virus in arid areas since it is mainly isolated from ticks infecting market animals. In the current study, DUGV was not detected in any tick pool. In contrast, Lutomiah et al., 2014 in Kenya, and Sang and his coworker (2006) found it in their study. Both methods revealed that *Rhipicephalus* spp. or *Amblyomma* spp. suggest that they are the potential vector of DUGV. Thus, our finding may be attributed to small numbers of ticks collected from both species.

Although THOV has been detected by William and his coworker in Egypt in 1973, we did not detect it in our study. Our finding is in accordance with Lutomiah et al. (2014) in Kenya. On the other hand, Sang and his coworker (2006) also detect it in their study. Detection of THOV in the previous study maybe because of the collection of ticks from different livestock (cattle).

CCHF is one of the most geographically common TBVs, with areas of endemicity including regions disseminating within the wide zone from the Middle East to Africa, southern Asia, China, and Europe. Bites from virus-loaded hard ticks or direct contact with blood or tissue from viral-infected animals can cause CCHFV transmission to individuals. It can also be transmitted among individuals by direct contact with blood or other body fluids. A couple of RT-PCR techniques were used to identify CCHFV in the ticks. The genome of CCHFV was found in 25 tick pools (1.8%) that were collected. This result is close to that of Chisholm et al. (2012) in Egypt.
The author mentioned that five out of six positive pools were acquired from *Hy. dromedarii* and 4.3% of pools were noticed to become infested by CCHFV. This might suggest that *Hyalomma* spp. are the primary reservoir and vector for CCHF in camels. This may possibly have a greater role in the epidemiology of the virus in Africa. The higher percentage of infection may be owing to feed of ticks on several livestock before spreading to unexpected animals, and the sample size is also low compared to our study, while temporal fluctuations between the samples may also account for the discrepancies in infection rate.

However, CCHFV was not detected in recent study in the Sudan. Previous serologic studies have been conducted in Egypt by Morrill et al. (1990) and the author discovered that CCHFV antibodies represented 14% which could be explained by a collection of the samples from camels imported from Sudan and quarantined in southern Egypt. The outcomes from a number of reports showed that the infection ratio of CCHF is fluctuating and is affected by the geographical multiplicity, the existence of various species of ticks, weather, and dissimilar tick hosts.

AHFV is an emerging infectious disease that has been detected in Saudi Arabia. Sporadic cases were reported in Africa in Egypt, Djibouti, and Europe. It has been suggested that AHFV originated in Africa and that, subsequently, AHFV spread to Saudi Arabia. Individuals become infected with AHFV either by bites of infested ticks or direct contact with contaminated blood through a wound or consumption of raw milk. *Hy. dromedarii* is one of the recognized AHFV vectors. Lately, AHFV RNA was also reported in immature *Hy. rufipes* ticks. The appearance of TBDs in non-endemic zones may be associated with pathogen propagation caused by the birds and other livestock migration. The initial line of AHFV infections assessment is nested RT-PCR and Taqman based real-time RT-PCR assays. A couple of RT-PCR tests were utilized to identify AHFV in the ticks. AHFV genome was detected within 14 tick pools (1%) that were accumulated. Our finding is agreeing with Hoffman et al., 2018 and Horton et al., 2016 who reported that 0.66% and 0.36% were detected as AHFV, respectively. However, Zakham et al., 2021 found that AHFV represent 10% of all collected samples in Saudi Arabia and these results may be attributed to the transportation of thousands of animals yearly out of Africa and other countries to Mecca, Saudi Arabia, in order to fulfill the individual need for diet and transportation during the Hajj. Carletti et al. 2010 confirm the existence of AHFV in Egypt as it was detected in two tourists returning back to Italy from southern Egypt.

5. CONCLUSIONS

Finally, this work confirmed the presence of CCHFV and AHFV in Egypt, besides demonstrating the TBVs transmission potential amongst camels and in turn directly to humans. Additional works focused on viruses from tick and human samples are epidemiologically valuable to clearly validate the epidemic state in the area. As a final point, there are no available articles about human infection from these kinds of TBVs in Egypt. This might be due to the absence of physicians’ knowledge and preventive control strategies limitation; thus, attention should be given to these kinds of diseases.

Supplementary Materials:

Funding: This work was supported by Dr. Ali Mohamed Zaki laboratory for Medical Analysis, Al Ahram, El-Montaza, Heliopolis, Cairo Governorate. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments: We gratefully acknowledge all those who contributed to this study, especially members who work at Dr. Ali Mohamed Zaki laboratory for Medical Analysis. We also thank Mr. Nasser Shaban Abo Seera for his assistance with the collection of ticks.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author Contribution: Hager A. Bendary: Investigation, data curation, resources, funding acquisition, formal analysis, writing-original draft, visualization, Fatma Rasslan: Conceptualization, methodology, validation, investigation, data curation, writing-original draft, writing-review & editing, supervision, project administration, Ali M. Zaki: Conceptualization, methodology, validation, investigation, resources, funding acquisition, writing-review & editing, supervision, Abeer K. Abdulall: Conceptualization, methodology, validation, investigation, writing-review & editing, supervision.

REFERENCES

1. Boulanger N, Boyer P, Talagrand-Reboul E, Hansmann Y. Ticks and tick-borne
Tick-borne viruses Prevalence

50. Getange D, Bargul JL, Kanduma E, Collins M, Bodha B, Denge D, Chiuya T, Githaka

61. Souza WM, Acrani GO, Carrasco A, Fumagalli MJ, Romeiro MF, Modha S, Hughes J, Nunes MR, Murca PR, Figueiredo LT. Identification of novel viruses in the families Flaviviridae (Jigmenvirus), Chuviridae, and Bunyaviridae (phleboviruses) in ticks from the south of Brazil.

