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Abstract: Globally, stroke is considered a major cause of incapacity and death. It results in high economic 

load to peoples in almost all countries. Numerous mechanisms have been anticipated to contribute to the 

pathophysiology of ischemic stroke, including epigenetic modification and dysregulation of some noncoding 

RNAs. In the recent years, there has been a great focus on studying long noncoding RNAs (lncRNAs) which 

have been recognized as possible biomarkers and therapeutic goals to treat ischemia. It was observed that 

maternally expressed gene 3 (MEG3)- lncRNA perform many functions and is implicated in the 

pathophysiology and/ or recovery of many diseases. Beside the high expression levels of MEG3 in brain, the 

upregulation of MEG3 after ischemic stroke was also observed. The current review sets sights on spotlighting 

the functions of lncRNAs, especially MEG3 in the pathogenesis of stroke as well as figuring out its genetic 

variants that are associated with various diseases, including stroke risk.  
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1. INTRODUCTION  

Cardiovascular diseases (CVDs), including 

stroke, are the chief cause of death worldwide. In 

2019, CVDs accounted for almost 18.6 million 

deaths 1. Stroke and ischemic heart diseases 

continued to be the humanity’s major murderers, that 

kept on being the top origins of mortality in the last 

two decades 2, before the worldwide eruption of 

Covid-19. Stroke is considered as a candidate of the 

foremost origins of continuing incapacity and 

mortality, that results in a serious economic problem 

to humanities of numerous nations 3. Many 

pathophysiologic mechanisms are proposed to be 

implicated in ischemic stroke. There is evidence that 

patients with ischemic stroke have had altered and 

sexually dimorphic long noncoding RNAs (lncRNA) 

expression compared with normal controls, 

suggesting the future use of lncRNA as a promising 

biomarker for stroke risk 4. Nowadays, 

comprehending regulatory role of noncoding RNA 

(ncRNA) has become one of the most vital missions 

of science 5. Maternally expressed gene 3 (MEG3), a 

promising RNA that has been reported to perform 

many functions, and to be implicated in the 

pathophysiology and/ or recovery of many diseases 6, 

was also observed to be upregulated in stroke and 

contributing to its pathogenesis by various suggested 

mechanisms 7,8. Single-nucleotide polymorphisms 

(SNPs) are variations of DNA as a result of change in 

nucleotides sequences (A, T, C, or G) by 1% or more 

in certain populations 9. Various association studies 

showed that SNPs have influential functions in 

principal molecular and hormonal systems, and are 

associated to several disorders 10. SNPs could 

disorder the secondary structure of the lncRNAs, 

affecting their molecular function and having an 

effect on their expression pattern 11. SNPs in MEG3 

gene, also, have their contributory roles and many 

studies proved the association between different 

genetic variants of MEG3 and several diseases, 

including ischemic stroke 12–14. 

2. STROKE  

Stroke is defined as a neural disorder resulting 

from acute central damage that happens in the brain 
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and/ or the spinal cord, which arises from vascular 

origins, including intracerebral hemorrhage, cerebral 

infarction and subarachnoid hemorrhage (SAH). 

Stroke is classed into two chief categories: 

hemorrhagic stroke, that happens due to a brain 

bleed, or ischemic stroke, that happens due to 

obstruction in a cerebral blood vessel 15.  

Globally, in 2019, there were 6.6 million deaths 

attributed to CVD, 3.3 million deaths of which were 

from ischemic stroke, 2.9 million deaths were from 

intracerebral bleeding, and four tenths were due to 

SAH 1. 

In Egypt, both prevalence and mortality rates 

for ischemic stroke have shown alarming increase 

from the year 2016 to the year 2017. Sorrowfully, the 

age-adjusted ischemic stroke prevalence per one 

hundred thousand, in 2016 (940.2) has increased in 

2017 to become 1374/100 000, whereas the age- 

adjusted rate of mortality per one hundred thousand 

for ischemic stroke was 53.8 in 2016 and has become 

82 in 2017 16,17. 

Numerous mechanisms have been anticipated 

to contribute to the pathophysiology of ischemic 

stroke. One of these mechanisms is the reactive 

oxygen species (ROS) formation, which is a key 

machinery for neuronal damage of ischemic, as well 

as reperfused brain tissue. Brain is explicitly subtle 

to oxidative damage due to plentiful lipid content and 

oxygen demand and the chemical reactions that 

involve glutamate and dopamine oxidation, as well 
18. 

Another previously suggested mechanism 

for stroke is the involvement of the well-known 

tumor suppressor protein p53. p53 is a key regulator 

of numerous reactions in cellular stress, that 

contributes to apoptosis of neurons when activated 

following ischemia in some brain areas 19. 

Interestingly, epigenetics represents an 

innovative field in the study of stroke. Several 

epigenetic tags may be helpful for predicting the risk 

of stroke, as well as its consequences and recovery. 

Because of numerous combinations of interplaying 

influences, each being has a unique epigenetic code, 

which may cause varying levels of stroke risk, 

outcome and recovery 20. Besides, earlier studies 

have investigated the fundamental machineries of 

brain ischemic damage stemming from either up- or 

down-regulation of some ncRNAs. These ncRNAs 

have become recognized as possible biological 

markers or therapeutic goals for the treatment of 

ischemia 3. Numerous lncRNAs are localized inside 

the nucleus, and previous studies have demonstrated 

that they affect gene expression 21,22 either by 

stimulation or repression, or by altering chromatin 

methylation or acetylation 23. Epigenetic 

modification of DNA methylation might control 

inflammatory damage and repair processes during 

the injury of stroke. This also exposes patients to 

chronic inflammation which additionally increases 

the recurrence of stroke 20. 

3. NONCODING RNAS (NCRNAS) 

AND LONG NONCODING RNAS 

(LNCRNAS) 

For many ages it has been thought that most of 

RNAs in our bodies are messenger RNAs (mRNAs), 

i.e.: protein coding RNAs. Nonetheless, previous 

research work has changed this concept, indicating 

that the majority of RNAs do not code for proteins, 

and that these ncRNAs can play an important role 

and even increase our knowledge of human illnesses 
5. 

Long noncoding RNAs are ncRNAs with the 

length of 200 nucleotides, or more, that are 

transcribed independently and do not have 

recognized protein-coding function 24,25. 

Nevertheless, several lncRNAs were observed to 

code for small peptides in human cells 26,27. The 

multiplicity of the non-coding transcriptome is 

considered as a claim to explain the outstanding 

phenotypic variations noticed among species having 

relatively similar protein-coding genes 28. In fact, 

several lncRNAs are similar to mRNAs in various 

aspects. However, the overall characteristics 

distinguishing mRNAs from lncRNAs do exist, 

where mRNAs are usually lengthier than lncRNAs, 

having more, yet shorter, exons and rather higher 

expression levels 29. 

3.1. The Role of ncRNAs and lncRNAs in 

Ischemic Stroke 

Noncoding RNAs are generously expressed in 

human brain whilst several research works have 

shown the alteration of their expression in cerebral 

ischemia 3,4,30,31. Long non coding RNAs are among 

numerous molecule types that produce operative 

changes in ischemic stroke. Though, the research 

relating lncRNAs to ischemic stroke remains 

inadequate, and the fundamental mechanisms of 

regulation for many lncRNAs (that have been 

realized associated with ischemic stroke) have not 

been deeply studied yet, these causal mechanisms 

cannot be overlooked. Moreover, lncRNA, as a vital 

endogenous regulatory mechanism, is foreseeable to 

be a novel mode and spotlight for ischemic stroke 

regulation 32, 33. 
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After brain ischemia, inflammatory responses 

are critical to cerebral tissue injury pathogenesis. 

Following cerebral ischemic injury, molecules 

released from damaged and necrotic tissues, as well 

as, from blood vessels, provoke proinflammatory 

cytokines, like tumor necrosis factor alpha (TNF-), 

interleukin-6 and interleukin-1b, causing 

inflammation and aggravation of initial cerebral 

injury 34. Not only do the transcription factors 

regulate the expression of inflammation-related 

signaling pathway molecules, but also do the 

ncRNAs regulate their expression at a significant 

level 3,35. 

Moreover, ncRNAs are implicated in oxidative 

damage, which in turn participates in consequent 

cerebral injury following brain ischemia, through 

oxidative alterations of macromolecules, such as: 

DNA, proteins, and lipids 18. Besides, the implication 

of ncRNAs in angiogenesis plays a vital role in 

neurofunctional recovery and vascular angiogenic 

remodeling after ischemic stroke 3,36,37. 

The expression levels of numerous lncRNAs 

were observed to be heightened in animals with brain 

ischemia or in vitro in oxygen-glucose deprived 

(OGD) cells, such as: MEG3 38,39, Fos downstream 

transcript (FosDT) 40, metastasis-associate lung 

adenocarcinoma transcript 1 (MALAT1) 41, H19 42,43 

and CaMK2D-associated transcript1 (C2dat1) 44, 

which have been proposed to enhance apoptosis, 

inflammation and new blood vessels formation. 

MEG3, MALAT1 and H19 genes were predicted by 

Gene Ontology enrichment analysis to exert effects 

on inflammation, angiogenesis and neurogenesis, via 

gene regulation mechanisms 23. 

FosDT lncRNA gene expression was increased 

significantly during the acute phase after transient 

middle cerebral artery occlusion (MCAO) of adult 

rats. Whereas rats treated with FosDT siRNA 

developed significantly tinier infarcts and their 

function recovery was improved, compared to 

control rats treated with siRNA. This recovery was 

measured by measuring sensorimotor deficits, motor 

coordination/motor learning and vestibulomotor 

function, 40. 

MALAT1 was suggested to defend the 

endothelium of blood vessels of human brain against 

apoptosis stimulated by Oxygen–glucose deprivation 

& reoxygenation (OGD-R). This defense was 

beleived to be by a phosphatidylinositol 

3-kinase-dependent survival mechanism, rather than 

by decreasing the overproduction of ROS induced by 

OGD-R 45. While it was found that suppression of 

H19 lncRNA and autophagy protected OGD/R cells 

from apoptosis, autophagy activation induced by 

OGD/R was inhibited by H19 siRNA. Moreover, 

polymorphism in H19 gene is associated with 

ischemic stroke increased risk, as revealed from the 

outcomes obtained from ischemic patients' 

peripheral blood samples 43. 

4. MATERNALLY EXPRESSED GENE 

3 (MEG3) 

In 2000, MEG3 gene was characterized for the 

first time by Miyoshi et al. using gene trapping 

technique. It corresponds to the mouse gene trap 

locus 2 (Gtl2) gene. 46.  The length of MEG3 is 

approximately 1.6 kilo-bases, occupying their 

position on chromosome 14q32.3 in humans 47. 

Human chromosome 14q32.3 exerts critical 

functions in differentiation of cells and development 

of tissues. It comprises an imprinted region, in which 

MEG3 gene is located, encompassing paternally 

expressed genes (PEGs), namely, DIO3, DLK1 and 

RTL1, beside maternally expressed genes (MEGs), 

namely, MEG3,8 and 9, and numerous huge 

gatherings of microRNAs 48–50.  

At the beginning, the roles of either MEG3 or 

Gtl2 was unidentified because they do not 

encompass substantial open reading frame (ORF) 47. 

Afterwards, it was established that the ORFs that are 

encoded by MEG3 transcripts are not needed for 

MEG3 function, nevertheless, the MEG3 RNA 

folding structure is crucial to its function, reinforcing 

the perception that MEG3 acts as an ncRNA 51. 

MEG3 is vastly expressed in many tissues, 

including the placenta, brain, pituitary, and adrenal 

glands. The transcripts of MEG3 are also detected in 

the liver, ovaries, testes, spleen, pancreas, and 

mammary gland 6,52. Furthermore, MEG3 was also 

observed to be differentially expressed in neurons 
53,54.  

Notwithstanding of the existence of a 

CCAAT-box and TATA-box in its promoter, as well 

as the presence of a poly(A) tails in its RNA 

transcripts, which makes it a target gene of RNA 

polymerase II, MEG3 gene does not encode for 

proteins 55. While transcription of MEG3 gene is 

required for its functions, mutant MEG3 made from 

cDNA missing the translatable ORF still retains 

MEG3 full functions 51. 

Interestingly, MEG3 lncRNA is encoded by 

both the paternally imprinted gene DLK1 as well as 

the maternally imprinted gene, MEG3 form the 

footprint 8. It is worth mentioning that genomic 

imprinting is a distinctive epigenetic incident that 

mainly shows itself in mammals' placenta, leading to 
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parent-of-origin explicit differential expression of 

paternally, as well as maternally inherited alleles 56.  

MEG3 comprises ten exons. Using varying 

exons in the core of the RNA, a single-copy gene of 

MEG3 is transcribed into different isoforms of its 

transcripts by alternative splicing. Each MEG3 

isoform comprises the shared exons: 1-3 and 8-10, 

whereas each of them holds a dissimilar blend of 

exons from four to seven 57. Twelve MEG3 

complementary DNA isoforms were characterized 

using sequence analysis 55,58. Figure (1) presents 

schematic illustration of the locus (DLK1–MEG3) 

on chromosome 14q32.3 and the 10 exons comprised 

by MEG3 gene. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (A) Schematic illustration of a part of human chromosome 14 showing the locus (DLK1–MEG3); (B) MEG3 gene 

including 10 exons 52. 

 

To perform its function, MEG3 (and its 

isoforms), as a big RNA molecule encompassing 

almost 1700 nucleotides, have to form a dense 

folding structure 55. Upon analyzing the potential 

folding structures of MEG3 RNA isoforms using 

mfold program, each isoform was observed to 

comprise 3 conserved motifs (M1- M3). Moreover, 

the expression of each MEG3 isoform is parallel to 

its stability 55.  

MEG3 was reported to perform many 

functions, and to be implicated in the 

pathophysiology and/ or recovery of many diseases, 

including tumors, where it enhances tumor 

suppression, for example in adenomas of the 

pituitary gland. In humans, it was found that MEG3 

gene expression is totally inhibited in most of 

pituitary gland adenomas. Furthermore, MEG3a 

isoform has practically proven a powerful capacity to 

hinder the proliferation of numerous human cancers, 

in vitro 6. 

 Consequently, MEG3 is suggested to be a 

potential tumor suppressor gene implicated in 

etiology, development and chemosensitivity of many 

tumors such as meningioma 57,58 and cervical cancer 
31.  Furthermore, a significant downregulation of 

MEG3 gene was observed in glioma cells. Whereas 

MEG3, when overexpressed, significantly repressed 

the proliferation at the same time as stimulating 

organized cell death and autophagy of glioma tissues 
59.  

Besides, the action of MEG3 as a tumor 

suppressor was found to be facilitated via   

                                  

p53-dependant and independent routes 51. It was 

demonstrated that every MEG3 isoform was capable  

of stimulating p53-mediated transactivation, and to 

suppress DNA synthesis in human colon cancer cell 

line 55.  However, MEG3 was able also to suppress 

cell proliferation in the absence of p53 51. 

4.1. MEG3 and stroke 

MEG3 also supports apoptosis of cells in 

ischemic stroke. It practically intermingles with p53 

facilitating ischemic injury 7. MEG3 upregulation 

has been observed in acute ischemic stroke in 

OGD/R models or transient MCAO animal models 

by numerous authors 38,39,60–62.  

Interestingly, MEG3 knockdown is protective 

against brain injury caused by ischemia. Besides, the 

knockdown of MEG3 also enhances the performance 

of neurons by acting as competitive endogenous 

RNA (ceRNAs) that struggles to bind directly to 

miR-21, that facilitates the ischemic death of neurons 

instead of programmed cell death 4 (PDCD4) mRNA 
61. MEG3-lncRNA also competitively inhibited 

miR-181b, which inhibits 12/15 lipoxygenase action 

in MCAO-induced infarction of brain neurons in 

mouse 60. Moreover, MEG3 knockdown was found 

to hinder inflammatory reactions and cell death 

stimulated by OGD/R 38.   

Another study revealed the relationship 

between MEG3 lncRNA and another miRNA, 

miR-424-5p, and their involvement in ischemic 

stroke, and showed an inverse relationship between 

them. Where, Semaphorin 3A (Sema3A) and MEG3 
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have shown overexpression in ischemic stroke 

samples, while the expression of miR-424-5p was 

lowered. MEG3 enhanced ischemic stroke 

progression via repressing miR-424-5p, which 

targeted Sema3A gene. The later encodes for vital 

protein for normal neuronal pattern development and 

is able to stimulate the mitogen activated protein 

kinase (MAPK) signaling pathway which 

contributes to the pathophysiology and development 

of ischemic stroke 39. 

In a previous research work, OGD treatment 

was observed to remarkably increase the expression 

of Bax, cleaved caspase-3 and MEG3, besides, it 

boosted human brain microvascular endothelial cells 

(hBMECs) apoptosis, whereas small interfering 

MEG3 (si-MEG3) inhibited those actions. These 

findings were supported by the same authors in a 

further in vivo study which revealed the significant 

elevation of the expression of MEG3 in a period of 

forty-eight hours of acute ischemic stroke. 

Moreover, those patients whose blood samples 

contained greater levels of MEG3 exhibited 

comparatively poor prognosis, suggesting the role of 

MEG3 as prognostic marker for deteriorating 

consequences and death in ischemic stroke 62. 

Moreover, MEG3 has also been reported to 

affect hemorrhagic stroke, where MEG3- lncRNA 

was significantly highly expressed in SAH patients 

than in normal controls. This was positively 

proportional to the severity of SAH. While, MEG3 

was overexpressed, many consequences were 

observed: activity of neurons was reduced, whereas 

some apoptotic mediators' expression levels were 

elevated (such as: cleaved Caspase-3 and p53), 

hence, apoptosis was augmented 63.   

On the contrary, Liu et al. have demonstrated 

the downregulation of MEG3 after transient MCAO 

in rats. The findings of Liu et al. proposed that 

MEG3 downregulation improved cerebral ischemic 

injuries and augmented blood vessels formation and 

growth after stroke. In addition, while preventing 

MEG3 gene expression stimulated endothelial cells 

to migrate and proliferate, and hence, stimulated the 

growth of cerebral vessels, MEG3 overexpression 

caused the reverse effect 8. Table (1) summarizes 

literature reported dysregulation of MEG3 gene 

associated with different stroke subtypes. 

 

Table 1. Literature reported dysregulation of MEG3 gene expression in stroke. 

Disease 
MEG3 

Expression levels 
In: Authors (year) 

Ischemic stroke upregulated MCAO mice, and in vitro: in 

OGD-cultured HT22 cell 

X. Liu et al. (2016) 60 

Ischemic stroke upregulated MCAO adult mice Yan et al. (2016) 7 

Ischemic stroke upregulated MCAO mice, and in vitro: N2a cell 

OGD/R model 

Yan et al. (2017) 61 

Ischemic stroke downregulated MCAO model in rat, and in vitro: 

HMEC-1 cells 

J. Liu et al. (2017) 8 

Subarachnoid 

hemorrhage (SAH) 

upregulated pre-chiasmatic SAH model in SD 

rats, and SAH patients 

Z. Liang et al. (2018) 63 

Ischemic stroke upregulated MCAO rat model, and in vitro: 

OGD/R-treated neurocytes  

J. Liang et al. (2020) 38 

Ischemic stroke upregulated ischemic stroke model in mice, and 

in vitro in (hBMECs) 

Wang et al. (2020) 64 

Ischemic stroke upregulated MCAO mice, and in vitro: 

OGD/R-treated neurocytes  

Xiang et al. (2020) 39 

Ischemic stroke upregulated OGD/R-treated neural stem cells  Zhao et al. (2021) 65 

Ischemic stroke 

combined with 

hyperglycemia (diabetic 

brain ischemic injury) 

upregulated OGD in rat brain microvascular 

endothelial cells (RBMVECs), 

combined with hyperglycemia 

Chen et al. 2021 66 

Ischemic stroke upregulated cerebral ischemia/ reperfusion 

mice, and OGD/R-treated HT22 

cells 

Li et al. 2022 67 
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4.2. Association between single nucleotide 

polymorphisms (SNPs) in MEG3 and several 

diseases 

Over the last decades, there has been a great 

focus in the literature on finding the association 

between various MEG3 SNPs and several diseases. 

As an example: MEG3 (rs941576) SNP, which is 

located in the imprinted region of the human 

chromosome 14q32.2 (comprising DLK1, a 

functional gene for type one diabetes mellitus, T1D), 

was robustly reported to be associated with T1D 

inherited susceptibility, from the paternal allele 

transmission route 12. Furthermore, AA genotype of 

the SNP MEG3 rs7158663 was observed to be 

associated with  the risk of diabetes mellitus type 

two 68. 

Additionally, several SNPs in MEG3 genes 

were associated with breast cancer susceptibility 69. 

SNPs detected in MEG3 gene exhibited differential 

imprinting in different tumor subtypes, compared to 

normal tissue samples. In a clinical trial of 

neoadjuvant chemotherapy for breast cancer, the 

genotype AG+GG of the dominant model of MEG3 

(rs941576) as well as, the genotype TC+CC of the 

dominant model of MEG3 (rs10132552), showed 

significant association with better survival (without 

disease) for patients with breast cancer 70. 

A recent study made to assess the association 

between MEG3 and the risk of breast cancer in 

fibroadenoma patients concluded that rs7158663 AA 

variant is significantly associated with susceptibility 

to breast cancer in controls as well as patients with 

fibroadenoma, compared to GG variant 71. MEG3 

polymorphisms were, also, studied in association 

with other cancers like: colorectal cancer and 

neuroblastoma 72,73. MEG3 rs7158663 AA genetic 

variant was also significantly associated with the risk 

of colorectal cancer, in comparison with GG variant 
72.  

Furtheremore, it was found that both MEG3 

SNPs (rs7158663 and rs3087918) mounted the 

possibility of acute myeloid leukemia, proposing a 

possible function of MEG3 in its pathogenesis 74. 

Whereas, MEG3 rs7158663 A allele was reported to 

be significantly associated with gastric cancer risk 75. 

Moreover, MEG3 polymorphisms also have shown 

associations with different diseases, other than 

tumors. MEG3 rs941576 A/G  genetic variation, for 

example, was shown to be in association with 

rheumatoid arthritis aggravation in Egyptians 76. 

Whereas, the AA genotype of  MEG3 rs7158663 

significantly increased osteoarthritis risk in chinese 

subjects by about two folds more than GG. This 

increased risk was shown in the dominant model, as 

well as the recessive model. The risk of osteoarthritis 

of the allele A was, also, greater than G allele by 

about one and half times 64. 

 

4.3. Association between MEG3 polymorphisms 

and stroke 

Nowadays, despite the great focus in the 

literature on finding the association between various 

MEG3 gene SNPs and several diseases, up till now, 

to the best of our knowledge, there has not been so 

much research work on investigating MEG3 SNPs 

that are associated with stroke.  So far, there has 

been two published studies to find association of 

some MEG3 SNPs with ischemic stroke 

susceptibility of Han people 13 and Egyptians 14.  

Firstly, a previous association study was 

conducted to evaluate the probable association of 

MEG3 genetic polymorphisms, namely, rs4081134 

and rs7158663, and miR-181b SNP (rs322931) with 

the susceptibility to ischemic stroke in Chinese. 

Combined analyses in this study unveiled that 

[MEG3 (rs7158663 AG/AA) + miR-181b (rs322931 

CT/TT)] and [MEG3 (rs7158663 GG) + miR-181b 

(rs322931 CT/TT)] heightened the susceptibility to 

ischemic stroke, in comparison with (rs7158663 

GG+ rs322931 CC). Whereas rs4081134 genotypes 

exhibited no significant association with ischemic 

stroke risk 13. 

Secondly, in a recent previous research work, 

our team demonstrated that MEG3 rs941576 genetic 

variant, alone or combined with rs7158663, is 

associated with acute ischemic stroke risk, 

advocating that rs941576 may have a role in acute 

ischemic stroke pathogenesis and may be helpful in 

its prognosis, later on 14. 

 

5. CONCLUSIONS 

The current review investigated the importance 

and the alarming increase of the incidence and 

prevalence of stroke, especially ischemic stroke, that 

urged scientists and health care providers to seek for 

novel scopes for its prognosis, treatment, and 

prevention. Recently, lncRNAs provide a 

state-of-the-art field to study human diseases, 

including cerebral ischemia, and the interrelated 

factors contributing to their risks, etiologies, 

pathophysiology, and complications. In this review 

article we have, also, reviewed several previous 

studies that investigated causal mechanisms of 
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ischemic brain damage following up- and 

down-regulation of some lncRNAs, especially 

MEG3. However, the basic mechanisms for MEG3 

and some other lncRNAs which have been observed 

to be associated with ischemic stroke, has not been 

deeply researched yet. We finally conclude that 

further extensive and intensive research works 

needed to be made on MEG3 gene and its genetic 

variants as encouraging potential biological markers 

and even therapeutic goals for ischemic stroke 

treatment.   
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