HPLC Analysis of Two Major Flavonoids and Antimicrobial Effectiveness against Multi-Drug Resistant Bacteria of Different Parts of Khaya senegalensis

Amal S. Yassin1, Salwa A. Abu El wafa1, Nagwan G. El Menofy2, Amal H. Ahmed1 and Mohamed Marzouk3

1Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt.
2Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt.
3Department of Tanning Materials and Leather Technology, Chemical Industries Research Institute, National Research Center National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt.

Correspondence: amalsalah79y@gmail.com

Article history: Received 25-02-2023 Revised 14-05-2023 Accepted 01-07-2023.

Abstract: Flavonoids are an important group of plant secondary metabolites that are widely used as powerful antioxidants in the management of a variety of illnesses, including inflammatory joint diseases, atherosclerosis, diabetes, in addition to free radical-induced degenerative eye disorders, cancer, dementia, and stroke. The main flavonoids of Khaya senegalensis plant are quercitrin and rutin. This work aims to determine the quercitrin and rutin content in methanolic extracts of K. senegalensis leaves, stems and fruits in order to determine the most productive part of these bioflavonoids by utilizing a precise HPLC quantitative method. HPLC analysis showed that leaf had the highest yield of quercitrin and rutin among the three parts (2.454 and 0.776 g/kg respectively), the stem had 1.812 and 0.286 g/kg, while fruit had a small amount of quercitrin and had no rutin. The antibacterial activity of methanolic extracts of leaves, fruits, stems and mixture of quercitrin and rutin was investigated by determining the MIC values against Gram positive and Gram negative standard and multidrug resistant bacteria (Methicillin-resistant Staphylococcus aureus and Acinetobacter baumanii) and revealed that the mixture of quercitrin and rutin as the major flavonoids of K. senegalensis in the three different parts showed the highest antibacterial activity against all tested bacteria MIC= 1.25mg/mL, followed by the leaf and stem extracts, however the fruit extract showed no antibacterial action.

Keywords: Khaya senegalensis; Meliaceae; quercitrin; rutin; HPLC; antibiotic-resistant bacteria.

This is an open access article distributed under the CC BY-NC-ND license

https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

Large deciduous tree Khaya senegalensis (Desr.) (K. senegalensis), [Family Meliaceae], generally referred to as African mahogany, endemic to the savannahs of sub-Saharan Africa 1. It is simple to recognize the tree due to its height of fifteen to thirty metres in addition to the dark-tinted, circular crown with lustrous leaves throughout. It produces fruit-like woody capsules. About Nigeria and other nations in West Africa, it is frequently used to treat a variety of illnesses 1. The leaves are employed in headaches and fevers treatment, extract of the bark stem is utilized to treat dermatoses, hookworm, malaria, and jaundice2. Adults can use the oil to treat ulcers, syphilis, and leprosy. K. senegalensis's ethanolic stem bark extract has been discovered to possess anti-free radical capabilities 2. Fever and headaches can also be treated with the seeds and leaves, and leprosy, syphilis, and mental sickness were treated with the root extract. 3

Studies conducted in both in vitro and in vivo showed that the bark ethanolic extract had antioxidant activity 4 and the stem bark's aqueous extract had anti-inflammatory action2, anti-diarrheal properties of leaf aqueous extract 5, aqueous stem-bark extract's antimicrobial properties, roots and the ethanolic leaf extract4, antifungal activity of defatted acetone extract of flowers 6, anti-parasitic activity of proanthocyanidins isolated from bark 7, hypoglycemic effect of aqueous extracts of stem bark and ethanolic extracts of roots9,10, stem bark aqueous

DOI : 10.21608/ajipms.2023.196073.1196

https://ajipms.journals.ekb.eg/
extract with hepatoprotective activity11, neuroprotective effect of limonoids from seeds12 and anti-cancer activities of methanolic extract of stem13. According to reports, \textit{K. senegalensis} has abundant limonoids 14-17, besides that to phenolic substances like quercitrin catechin and rutin 18.

It has repeatedly been discovered that infectious diseases are one of the main threats to world health. In 2013, the World Health Organisation (WHO) stated that 5.9 million of the 9.6 million deaths in the sub-Saharan African region were caused by infectious illnesses, or 61.7% of all deaths. Plants continue to be the most prevalent major natural source of active medications and are crucial in the ethnomedical treatment of a variety of diseases. Medicinal plants typically contain a variety of phytochemicals, some of which are responsible for their biological activity19.

Although \textit{K. senegalensis} plant has great medicinal value, there is insufficient study concerning its phytoneutrients and biological activity. Infectious diseases have been consistently found to be among the leading causes of threat to global health. The World Health Organization (WHO) in 2013 reported that infectious diseases accounted for 61.7% (5.9 million) of the 9.6 million deaths in the sub-Saharan African region. Thus, this research objective was to investigate the levels of rutin and quercitrin, the two major flavonoids in \textit{K. senegalensis} in three parts (leaves, fruits and stems) as well as to evaluate their antimicrobial activity. The findings of this study can help pharmaceutical companies make the best choices in terms of functionality, performance, and cost-effectiveness.

2. METHODS

2.1. Plant material

\textit{K. senegalensis} leaves, stems, and fruits were gathered at the Giza Zoo., Egypt, in June 2019. The plant was identified and compared to a reference herbarium by Mrs. Trease Labib, Senior Botanist, the Orman Garden in Giza, Egypt, moreover, in comparison to the reference specimen. Voucher specimens for leaves, stems and fruits (code: KSL19, KSS19, KSF19 respectively) have been placed in the herbarium of the Faculty of Pharmacy (Girls), Department of Pharmacognosy and Medicinal Plants, University of Al-Azhar in Cairo, Egypt. The samples were stored individually and dried in a ventilated shaded place, pulverized and stored in tightly closed containers away from sources of heat and moisture.

2.2. Extraction

Each dried plant part’s air-dried powder (40g) was macerated with 70% methanol to extract it individually. (3x500ml) at 25±2 °C each for one day. To get a viscous extract of each part separately, the solvent was eliminated after straining the extract using a rotary evaporator at 60°C (Buchi Co., Switzerland).5.28 gm, 8.83 gm and 1.49 gm leaves, stems and fruits extracts respectively.

2.3. Quantitative analysis of the active substances

Three plant samples from three parts extracts (leaves, stems and fruits) and the mixture of quercitrin and rutin were subjected to quantification of rutin and quercitrin Using high performance liquid chromatography (HPLC), Extensive freeze-drying of semi-solid extracts was done for 24 hours to remove interfering components prior to HPLC analysis, including solvent and water, during quantification. HPLC technique was applied according to Nugroho et al.; 2017 20 method, with some improvements to get the finding efficient.

2.4. Antimicrobial activity evaluation

The antibacterial activity of the of \textit{k. senegalensis} leaves, stems, fruits extracts and the mixture were evaluated by microbroth dilution test designed to determine the Minimum Inhibitory Concentration (MIC) according to the CLSI reference standards 2018 (CLSI Document M100-S28, Wayne PA.). 21-23 All the tests were run in duplicate. The antibacterial activity for all natural samples had been screened against two Gram-positive bacterial isolates; Methicillin-resistant \textit{Staphylococcus aureus} (MRSA) (ATCC 43300) and one clinical isolate of \textit{MRSA} in addition to two Gram-negative bacterial isolates; \textit{Acinetobacter baumannii} (ATCC 19606) and multidrug resistant (MDR) \textit{Acinetobacter baumannii} clinical isolate.

3. RESULTS

3.1. Quantitative analysis of the active substances

The level of quercitrin and rutin in the three tested extracts of \textit{K. senegalensis} were displayed in Table 1 and Figure 2. Table 2 and figure 3 displayed their level in the mixture. It was concluded that leaves showed the highest yield of quercitrin and rutin among the three parts (2.454 and 0.776 g/kg, respectively), stem exhibited 1.812 and 0.286 g/kg while fruit showed little amount of quercitrin and no rutin. While the mixture contains 38.184 and 6.295 g/kg quercitrin and rutin, respectively (Figure 3, Table 2).
Quantitative determination of two major flavonoid contents of Khaya senegalensis

Figure 1. Structures of compounds: A: quercitrin, B: rutin

Figure 2. HPLC chromatograms (1: leaf, 2: stem, 3: fruit)
Table 1. Quercetin and rutin levels in leaves, stems, and fruit extracts

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Quercitrin (g/kg)</th>
<th>Rutin (g/kg)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>2.454</td>
<td>0.776</td>
<td>3.23</td>
</tr>
<tr>
<td>Stem</td>
<td>1.812</td>
<td>0.286</td>
<td>2.098</td>
</tr>
<tr>
<td>Fruit</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
</tbody>
</table>

Table 2. Quercetin and rutin levels in the mixture

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Quercitrin (g/kg)</th>
<th>Rutin (g/kg)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>mix.</td>
<td>38.184</td>
<td>6.295</td>
<td>44.479</td>
</tr>
</tbody>
</table>

Figure 3. HPLC chromatogram of the mixture

Table 3. MIC (mg/mL) of methanolic extracts of *K. senegalensis* stem, leaf and fruit extracts against Gram-negative bacteria and Gram-positive bacteria.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gram- Negative bacteria</th>
<th>Gram-Positive bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acinetobacter baumannii (ATCC 19606)</td>
<td>Acinetobacter baumannii clinical isolate</td>
</tr>
<tr>
<td>Stem</td>
<td>0.625</td>
<td>1.25</td>
</tr>
<tr>
<td>Leaf</td>
<td>0.625</td>
<td>1.25</td>
</tr>
<tr>
<td>Fruit</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Amox.</td>
<td>0.625</td>
<td>>0.5</td>
</tr>
</tbody>
</table>

Amox.: amoxicillin, ATCC: American type culture collection, MRSA: Methicillin-resistant Staphylococcus aureus

Table 4. MIC (mg/mL) of mixture of quercitrin and rutin against Gram-negative bacteria and Gram-positive bacteria

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gram- Negative bacteria</th>
<th>Gram- Positive bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acinetobacter baumannii (ATCC 19606)</td>
<td>Acinetobacter baumannii clinical isolate</td>
</tr>
<tr>
<td>Mix.</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Amox.</td>
<td>0.625</td>
<td>>0.5</td>
</tr>
</tbody>
</table>

Amox.: amoxicillin, ATCC: American type culture collection, MRSA: Methicillin-resistant Staphylococcus aureus
3.2. Antimicrobial activity evaluation

3.2.1. Gram positive bacteria:

Antimicrobial activity of extracts was investigated against Gram positive bacteria: MRSA (ATCC 43300) and one MRSA clinical isolate by determination of MIC. Leaves and stem total extracts showed good antibacterial activity (MIC = 2.5 and 2.5 mg/mL, against both bacteria respectively. However, total fruit extract demonstrated week antibacterial activity with MIC > 10 mg/mL compared to amoxicillin with MIC > 0.5 mg/mL (Table 3). While, the mixture of quercitin and rutin showed good antibacterial activity (MIC = 1.25 mg/mL) against both bacteria (Table 4).

3.2.2. Gram negative bacteria

Leaves and stem total extracts showed good antibacterial activity against Acinetobacter baumannii (ATCC 19606) and Acinetobacter baumannii clinical isolate with MIC value of 0.625 mg/ml and 1.25 mg/mL for both extracts respectively. However, fruit extract showed week antibacterial activity against both isolates with MIC > 10 mg/mL compared to amoxicillin (Table 3). While the mixture of quercitin and rutin showed good antibacterial activity (MIC = 1.25 mg/mL) against both bacteria (Table 4).

4. DISCUSSION

The public's health is seriously threatened by the growth of infections brought on by bacteria that are multidrug resistant (MDR). A significant global threat to human health is posed by the emergence and rapid spread of antibiotic-resistant bacteria. In terms of clinical resistance to antibiotics, ESKAPE species which include Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterococcus faecium are the most prevalent antibiotic-resistant strains. Gram-negative Acinetobacter baumanii and Gram-positive S. aureus are among them, and they have become significant bacteria in increasing death and morbidity rate due to their high antibiotic resistance. MRSA spread worldwide, causing bacterial infections in healthcare and in the community. Asymptomatic colonisation of mucosa of the nose, minor infection of skin and soft tissue, and an invasive fulminant sickness with a high fatality rate are all clinical symptoms of MRSA infection. Acinetobacter species have recently emerged as an important driver of essential healthcare-associated illnesses and infections. Acinetobacter baumannii, an aerobic Gram-negative bacterium that causes infections of the skin, circulation, urinary tract, and other soft tissues, is mostly associated with hospital-acquired infections worldwide. Unfortunately, the global spread of A. baumannii resistance to different antibiotics especially carbapenem endangers human life and the current healthcare system.

Plants continue to be the most plentiful major natural source of active medications and are crucial in the ethnomedical treatment of a variety of illnesses. The majority of phytochemicals found in medicinal plants, some of which are typically responsible for their biological actions, are found in these species. K. senegalensis contains a variety of secondary metabolites, including tannins, flavonoids, leucoanthocyanins, alkaloids, and mucilage. Its abundance in total polyphenols and flavonoids was also demonstrated by the earlier study. The most important phenolics are flavonoids, which can either be in a glycosidic or non-glycosylated form. Since flavonoids are made up of two phenyl rings (A and B) connected to a heterocyclic ring (C), their carbon skeleton is abbreviated as C6-C3-C6. These compounds exhibit great chemical diversity, mostly as a result of variations in the positions of the B- and C-rings, their degree of hydroxylation, oxidation, and ring C saturation. Flavonols are a significant class of flavonoids and are distinguished by the presence of a hydroxyl group at the C3 position of B ring. According to this study, quercitin and rutin are two of the principal metabolites in K. senegalensis. Each of them contains a quercetin aglycone. Quercetin has a wide range of pharmacological effects. Numerous studies examine its antibacterial effects. It has been demonstrated that quercetin inhibits the growth of several Gram-positive, Gram-negative bacteria, fungi, and viruses. It has been demonstrated that quercetin has antibacterial effects on a variety of Gram-positive bacteria, including MRSA, Methicillin-sensitive S. aureus (MSSA), and Enterococcus spp. In the current study the antimicrobial results, revealed that the antimicrobial properties is directly related to quercetin and rutin levels, which encouraged us to try a mixture previously isolated from the plant total extract composed of mixture of quercetin and rutin, the quantity of each flavonoid was done according to the HPLC method mentioned above which revealed that this mixture contains 38.184 and 6.295 g/kg quercetin and rutin, respectively (Figure 3, Table 2). The mixture of quercetin and rutin showed the highest antimicrobial activity as evidenced by their low MIC values (1.25 mg/ mL) against all tested bacteria.
bacterial isolates of MRSA and Acinetobacter baumannii as illustrated in table 4. Leaf and Stem extracts showed similar results to that of mixture of quercitrin and rutin as demonstrated in table 3 (MIC = 2.5 and 2.5 mg/mL, for both extracts against both MRSA isolates and MIC value of 0.625 mg/mL and 1.25 mg/mL against both Acinetobacter baumannii isolates.

5. CONCLUSIONS
An initial assessment of the MIC values for various standard and antibiotic-resistant bacteria using the whole extracts of Khaya senegalensis leaves, stems, fruits, and a mixture of two isolated chemicals (rutin and quercitrin) showed that, the mixture (rutin and quercitrin) showed the highest antimicrobial activity as evidenced by their low MIC values (1.25 mg/mL) against all tested bacterial isolates. Leaf and stem methanolic extracts showed good antimicrobial activity against all tested bacterial isolates, MIC ranged from 0.625 to 2.5mg/mL, while the fruit extract showed no antibacterial activity against all tested bacterial isolates suggesting that the mixture has the highest antibacterial activity, ensuring that antimicrobial activity was related to rutin and quercitrin levels.

Funding: NA
Acknowledgments: NA
Conflicts of Interest: According to the authors, there are no conflicts of interest

Ethical Statement: NA, neither animals nor human used in this study.

Author Contribution: Amal S. Yassin: practical chromatography, data collection and writing the first version of manuscript. Mohamed Marzouk, Amal H. Ahmed and Salwa A. Abu El Wafa: Designing the research, analysing the data, interpreting the findings and reviewing the final manuscript. Nagwan G. El Menofy: Performing the practical part of antimicrobial evaluation, writing and reviewing the final manuscript. All authors have given their approval to the finished text.

List of Abbreviations:
HPLC: High performance liquid chromatography
MIC: Minimum Inhibitory Concentration
CLSI: Clinical and Laboratory Standards Institute
ATCC: American type culture collection
Gm/ kg: Gram per kilogram
WHO: The World Health Organization
Amox: Amoxicillin
Mix: Mixture

REFERENCES

https://aijpms.journals.ekb.eg/

https://aiipms.journals.ekb.eg/

