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Abstract: Proton pump inhibitors (PPIs) are drugs that successfully inhibit stomach acid secretion. They are 

used for the management of various acid-related conditions, including gastroesophageal reflux disease 

(GERD) and other gastric illnesses. It can reduce hydrochloric acid output via irreversible binding to the 

hydrogen potassium adenosine triphosphatase (H+/K+ ATPase) enzyme and inhibiting its action in the 

stomach. PPIs are among the most often prescribed drugs; however, 25% to 70% of these prescriptions have 

no legitimate indication. As a result, patients frequently take these treatments without benefit, exposing 

themselves to unwanted adverse events. PPIs can cause acute interstitial nephritis (AIN), which can be a 

serious side effect associated with acute kidney injury (AKI). It has been reported that the long-term use of 

PPIs has been associated with an elevated risk of chronic kidney disease (CKD). As a result, this review aims 

to investigate the adverse effects of long-term use of PPIs on renal function. 
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1. INTRODUCTION  

Precise regulation and production of gastric 

acid secretion are necessary to maximize its 

advantages and minimize its drawbacks. Acid 

renders the small intestine and stomach 

comparatively sterile and destroys bacteria, including 

Helicobacter pylori (H pylori). It facilitates the 

absorption of calcium, vitamin B12, and nonheme 

iron in addition to aiding in the digestion of proteins. 

Ulcers, however, develop when mucosal defense 

mechanisms are overpowered by acid and pepsin 

levels 1. Several medications were developed to 

target the parietal cell and stop acid production since 

it was discovered that the parietal cell secretes 

stomach acid. The primary functional targets of the 

parietal cell were the gastric hydrogen potassium 

adenosine triphosphatase (H+/K+ ATPase) enzyme, 

and the histamine type 2 (H2) receptor 2. Acid-

lowering medications that treat GERD include 

histamine type 2 receptor antagonists (H2RAs) like 

ranitidine and proton pump inhibitors (PPIs) like 

omeprazole. H2RAs cannot effectively control reflux 

symptoms, and their capacity to suppress 

postprandial stomach acid output is restricted. Unlike 

H2RAs, PPIs inhibit the last stage of acid secretion, 

resulting in strong and sustained acid suppression 3. 

In this review, we will focus on PPIs. 

1.1.  Proton pump inhibitors. 

Gastric acid secretion is inhibited by PPIs, also 

known as H+/K+ ATPase inhibitors 4. These 

medications, which belong to a class of substituted 

benzimidazole sulfoxides drugs, considerably 

diminish the output of hydrochloric acid in the 

stomach's parietal cells 5. PPIs are among the most 

frequently prescribed medications, they are 

frequently used to treat patients suffering from acid-

related disorders such as peptic ulcer disease (PUD) 

and GERD. They are being prescribed excessively 

and used for unsuitable conditions, and their 

utilization is on the rise, especially for extended 

periods of treatment 6. Between 25% and 70% of 

these prescriptions are thought to be inappropriately 

prescribed 7. 
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 In 1989, their use was initially approved 8. 

Launched in 1989, omeprazole was the first 

medication in this class. Lansoprazole (1995), 

rabeprazole (1999), pantoprazole (2000), 

esomeprazole (2001), and dexlansoprazole (2009) 

were the subsequent drugs in this family. Due to the 

availability of omeprazole, esomeprazole, and 

lansoprazole for over-the-counter (OTC) purchase in 

the US, the accessibility for the public has increased, 

so there is now concern regarding the possible long-

term negative effects of PPIs, as well as their 

increased and occasionally improper use 9. Among 

the top twenty medications delivered globally, 

omeprazole is the most commonly used PPI 10. 

1.1.1.  Omeprazole: 

1.1.1.1.  Structure: 

Omeprazole (OME) IUPAC name is, 5-

methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl) 

methyl] sulphinyl]-1H-benzimidazole 11,12. OME is a 

weak, lipophilic base 13. It is made up of two 

heterocyclic moieties such as a benzimidazole ring 

and a substituted pyridine ring which are linked via 

methylsulfinyl group 14. It can exist in two distinct 

optically active forms, S-omeprazole (esomeprazole) 

and R-omeprazole since it has a tri-coordinated 

sulfur atom in a pyramidal structure 11. It is available 

as a racemic mixture of its two optical isomers, 

although pharmacological research has shown that 

esomeprazole is more effective than R-omeprazole 
15. Since it has 2 pKa (negative logarithms of the acid 

ionization constant) values, 4.0 for pyridinium and 

8.8 for benzimidazole, fifty percent of it protonated 

at lower physiological pH values 10. 

1.1.1.2.  Pharmacokinetic properties of 

omeprazole:  

1.1.1.2.1. Absorption and distribution: 

Due to the susceptibility of OME to acid 

degradation, it must be prepared with an enteric 

protective coating to withstand the breakdown 

caused by stomach acid and enable absorption in the 

small intestine's more alkaline environment 16. After 

passing from the stomach, PPIs are absorbed in the 

proximal small bowel 17. After oral administration, it 

is absorbed quickly but unevenly, with a 30%–40% 

oral bioavailability and a 95% plasma protein 

binding. Its action starts within 60 minutes, with 

maximum activity at 120 minutes, and has significant 

effects that persist for three to five days 18. 

1.1.1.2.2. Metabolism: 

The cytochrome P450 system is an 

indispensable component in the metabolic process. 

The fundamental components of this process 

encompass the polymorphisms of CYP2C19 and 

CYP3A4. The enzyme CYP2C19 is responsible for 

the conversion of OME into hydroxyl and 5-O-

demethyl metabolites, whilst CYP3A4 facilitates its 

transformation into sulfone 2. The two main OME 

metabolites detected in plasma are sulfonated and 5-

hydroxylated compounds, while the most common 

metabolite in urine is 5-hydroxylated omeprazole 19. 

1.1.1.2.3. Excretion: 

 Approximately 80% of OME taken orally is 

eliminated as metabolites in the urine, with the 

remaining 20% coming primarily from biliary 

secretions excreted in the feces 18,19. 

1.1.2.  The biochemical reaction steps of stomach 

H+/K+ ATPase and physiology of gastric acid 

secretion: 

The discharge of gastric acid is accompanied by 

notable morphological changes in the parietal cells. 

Intracellular compartments beneath the apical 

membrane contain tubulovesicles that are abundant 

in H+/K+ ATPase and form a reticulated meshwork 

when parietal cells are at rest. Tubulovesicles 

undergo translocation and apical membrane 

attachment upon stimulation, thereby instigating a 

substantial secretion of acid 20. 

The H+/K+ ATPase facilitates the exchange of 

intracellular hydrogen ions for extracellular 

potassium ions by utilizing ATP 21. The biochemical 

reaction steps of H+/K+ ATPase include 

phosphorylation and de-phosphorylation, which 

occur in conjunction with cyclic conformational 

changes denoted by E 1→ E 2→ E 1, in which the 

cation-binding sites of the enzyme are oriented either 

towards the extracellular surface at the E2 state or the 

cytoplasm at the E1 state 20.  

The catalytic subunit of ATPase undergoes 

cyclic phosphorylation and dephosphorylation, 

which drives conformational changes that enable 

H+/K+ ATPase to catalyze transport. The hydronium 

ion is bound by H+/K+ ATPase. Upon 

phosphorylation, the conformation changes from 

E1P•H3O+ to E2P•H3O+ form. The E2P•K+ 

conformation is created by the release of H3O+ and 

the binding of K+ on the extracytoplasmic surface of 

the enzyme. After dephosphorylation, the E2P•K+ 

conformation changes into the E1K conformation. 

The E1K conformation releases K+ to the 

cytoplasmic side, enabling H3O+ to rebind and the 

enzyme cycle to be completed 21,22. 

1.1.3.  Pharmacodynamics of proton-pump 

inhibitors: 

They act by preventing the production of gastric 

acid by irreversibly blocking the enzyme H+/K+ 

ATPase in the stomach parietal cells 9. All PPIs have 

the crucial chemical property that their pyridine 

nitrogen pKa values are nearly 4.0. This suggests that 

2



 

Fayed et al, Azhar Int J Pharm Med Sci 2025; Vol 5 (1):1-16  
  

 

https://aijpms.journals.ekb.eg/ 

 

they are weakly basic substances that will be 

maximally protonated in the extremely acidic 

intracellular canaliculi of actively secreting parietal 

cells in the stomach and barely protonated at neutral 

pH of blood 23. PPIs are weak bases that are sensitive 

to acid; therefore, to prevent them from being 

destroyed by gastric acid and to enable intestinal 

absorption, they need to have an enteric coating 24. 

These prodrugs are absorbed from the small 

intestine and enter the systemic circulation following 

oral administration. Then, they diffuse to the 

extracellular canaliculus after entering the gastric 

parietal cell 25. Upon reaching the parietal cell's 

acidic site of action, the PPIs will undergo acidic 

activation which is essential to inhibit the proton 

pump 24. Activation of the PPIs occurs by the 

addition of two protons to the nitrogen atom on both 

sides of the sulfinyl group 16. Subsequently, it 

rearranges to produce a sulfenic acid which exists in 

equilibrium with a sulfenamide. Then both chemical 

entities can form covalent bonds with thiol groups at 

cysteine residues on the luminal surface of the 

H+/K+ ATPase α-subunit. As a consequence of this 

covalent attachment, the enzyme becomes selectively 

and nearly irreversibly inactivated leading to 

sustained inhibition of stomach acid output 26. The 

functionality of the H+/K+ ATPase enzyme is 

compromised by covalent bonding, necessitating the 

synthesis of new H+/K+ ATPase molecules by 

parietal cells to restore its activity 23. 

1.1.4.  Prevalence of proton pump inhibitors 

PPIs rank as the fourth most commonly 

dispensed drug in the United States, with up to 21 

million Americans receiving prescriptions for them 

annually 27. Off-label use of medications is common 

in intensive care settings, with PPIs being among the 

most frequently used off-label drugs, reaching 

prevalence rates as high as 55% in intensive care 

units. 28. PPIs are usually used in ICUs for short-term 

as stress ulcer prophylaxis (SUP) 29, for those at high 

risk of gastrointestinal Bleeding 30. According to data 

gathered in 2013 and 2014, approximately 2.5% of 

individuals who were acutely admitted to an 

intensive care unit (ICU) experienced upper 

gastrointestinal bleeding. To avoid this bleeding, 

70% of these persons were provided stress ulcer 

prophylaxis. 31. The estimated prevalence of PPI use 

is 7-8% among adult individuals residing in the 

community in the United Kingdom and Denmark, 

However, in Canada, rates as high as 40-50% have 

been documented among older individuals, and 

similarly in Australia among those in residential care. 

Notably, in England alone, over 50 million 

prescriptions for PPIs were dispensed in 2015 32. 

1.1.5.  Uses of proton-pump inhibitors: 

The primary indication for PPI use is to manage 

stomach acid-related disorders, such as duodenal and 

stomach ulcers, reflux esophagitis, and Zollinger-

Ellison syndrome 27. Moreover, they are commonly 

used to avoid gastrointestinal bleeding in patients 

undergoing dual antiplatelet medication consisting of 

clopidogrel and aspirin following myocardial 

infarction (MI) and percutaneous coronary 

intervention (PCI). Additionally, PPIs are considered 

to be an important adjunctive component of a 

conventional antibiotic regimen that includes 

amoxicillin and clarithromycin to eradicate H.Pylori 

because of their strong acid-suppressive properties, 

which enhance the anti-H. Pylori properties of the 

combined antibacterial 5. 

They are frequently provided as co-prescription 

for patients who take nonsteroidal anti-inflammatory 

drugs (NSAIDs), ulcer avoidance in patients with a 

history of PUD, and critically ill patients in the 

intensive care unit (ICU) 28,29. It is estimated that 15 

million persons in the US use prescription PPIs (with 

a 7.8% estimated prevalence in the US adult 

population) 30. PPIs are also sometimes prescribed 

inappropriately; according to cross-sectional studies, 

only around 30% of patients received PPI 

prescriptions with suitable indications and in line 

with guidelines 28. 

1.1.6.  Clinical PPI recommendations and GERD 

recommendations and their doses: 

The recommendations of PPI in the treatment of 

GERD and the recommended doses have been shown 

in Table (1). 

1.1.7. Drug interactions of proton pump inhibitors: 

1.1.7.1. Modification of gastric PH 

Because of their ability to reduce gastric acidity, 

PPIs can alter the release from products with pH-

dependent dissolving characteristics or change the 

solubility of other drugs. A co-administered single 

dosage of OME 60 mg dramatically decreased the 

bioavailability of oral ketoconazole. It is believed 

that this effect results from ketoconazole's incredibly 

low solubility at pH values greater than 3 31. 

1.1.7.2. Interaction with efflux transporter  

Since digoxin is a substrate of P-glycoprotein 

with limited metabolic biotransformation, 

omeprazole has been demonstrated to improve the 

bioavailability of digoxin. The potential mechanism 

underlying the drug-drug interaction between 

digoxin and omeprazole may involve the blockade of 
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digoxin efflux into the intestinal lumen induced by 

omeprazole, which is mediated by P-glycoprotein 5. 

1.1.7.3. Modification of drug metabolism in the 

liver 

They can contribute to Drug-Drug interactions 

by modifying how simultaneously given medicines 

are metabolized by either stimulating or inhibiting 

the activity of particular enzymes. Pharmacokinetic 

interactions denote the impacts on cytochrome P450 

(CYP450) and the possibility of drug interactions 

that may arise from the concurrent use of two or more 

medications. The most researched combination is 

clopidogrel and PPIs, which have been linked with 

an elevated risk of adverse cardiovascular 

consequences 28. Clopidogrel is classified as a 

prodrug, necessitating it is transformation into 

an active metabolite via the liver CYP450 enzyme 

system. The polymorphisms CYP2C19 and CYP3A4 

seem to have the main metabolic roles. PPIs work by 

competitively inhibiting CYP2C19, to prevent the 

prodrug clopidogrel from transforming into an active 

metabolite. So the antiplatelet action of clopidogrel 

is potentially diminished due to the inefficient 

conversion of the prodrug to its active metabolite 32. 

1.1.7.4. Alteration of drug elimination 

Administration of PPI can alter the elimination 

of some drugs such as delaying the elimination of 

methotrexate5. 

Table1. The recommendations of PPI in the treatment of GERD and the recommended doses 

1.1.8. Proton pump inhibitors' adverse effects: 

Over the past few decades, there has been a 

notable rise in the utilization of PPIs 28. PPIs are 

commonly utilized for extended periods and for 

indications that have not been evaluated or 

authorized by the Food and Drug Administration 

(FDA). They are commonly overprescribed, 

infrequently deprescribed, frequently initiated 

improperly during hospitalization, and used for 

prolonged duration even in the absence of a medical 

indication 30. It's estimated that between 25% and 

70% of PPI prescriptions are for improper indications 
33. PPIs are often well tolerated, with side effects 

occurring less frequently than 5% 34. The most 

frequent side effects were nausea, diarrhea, 

headaches, and abdominal pain 35. The most recent 

adverse effects associated with prolonged PPI use 

have been investigated as shown in Figure (1). 

1.1.8.1. Nutritional deficiencies 

1.1.8.1.1. Magnesium 

Prolonged PPI treatment use has been linked to 

many cases of severe hypomagnesemia throughout 

the last ten years 36. In 2006, hypomagnesemia was 

first reported as a side effect of PPI therapy 37. It has 

particular clinical importance because it can lead to 

coexisting metabolic disorders (primarily 

hypocalcemia and hypokalemia), 

hypoparathyroidism, osteomalacia (probably from 

vitamin D deficiency), osteoporosis, and 

neuromuscular disturbances (such as tetany, 

seizures) as well as cardiac complications (mainly 

arrhythmias) 34,38. The FDA issued a warning in 2011 

that prolonged usage of PPIs could result in low 

PPIs Dose of PPIs in GERD 39 Recommendations 40–42 

Dexlansoprazole 
30 to 60 mg administered 

orally once daily 

It has been recommended PPIs be trialed for GERD if antacids, diet, 

and lifestyle modifications fail to resolve symptoms  

For patients with classic GERD symptoms of heartburn and 

regurgitation who have no alarm symptoms, we recommend an 8-

week trial of PPIs once daily 30–60 min before a meal usually in the 

morning before breakfast rather than at bedtime for GERD symptoms 

control.  

We advocate the discontinuance of PPIs in patients with classic 

GERD symptoms who respond to an 8-week empiric trial of PPIs. 

If symptoms persist beyond 8 weeks, it is advised to first evaluate 

adherence to the prescribed regimen and dosing. Following this 

assessment, the necessity for ongoing treatment should be 

reevaluated. 

For extraesophageal and typical GERD symptoms. We suggest 

considering a trial of twice-daily PPI therapy for 8–12 weeks. 

For (Los Angeles C or D) esophagitis: indefinite maintenance 

treatment with a PPI or surgery is recommended 

Patients who necessitate maintenance therapy with PPIs should 

receive them at the lowest effective dose. 

For refractory GERD we recommend the optimization of PPI therapy 

as the first step in the management of refractory GERD. 

Esomeprazole 
40 mg administered orally 

once daily 

Lansoprazole 
30 mg administered orally 

once daily 

Omeprazole 
20 mg administered orally 

once daily 

Pantoprazole 
40 mg administered orally 

once daily 

Rabeprazole 

 

20 mg administered orally 

once daily 

Immediate-release 

omeprazole 

20 mg administered orally 

once daily 
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serum magnesium levels, based on case reports 39. 

Additionally, the FDA noted that unless the PPI is 

discontinued, magnesium supplements might not be 

enough to treat low serum magnesium levels 40. 

1.1.8.1.2. Iron 

The acid present in the stomach plays an 

important role in facilitating the absorption of non-

heme iron. It accomplishes this by liberating iron 

from the particles of the ingested meal and 

converting it from its ferric state to the more easily 

absorbable ferrous form 41. Furthermore, it has been 

observed that gastric acid has a role in promoting the 

chelation process between ferrous salts and ascorbate 

in the stomach. These resulting chelates remain 

soluble in the duodenum, which has a more alkaline 

environment. As a result, the absorption of iron is 

enhanced. Prolonged use of PPIs may significantly 

increase the risk of developing iron deficiency 

anemia, however, there is very little evidence to 

support this 36. 

 

Figure 1. Adverse effects associated with long-term PPI use 

1.1.8.1.3. Calcium 

The majority of calcium from the diet is 

absorbed by the small intestine. Gastric acid is 

necessary for the dissolution of calcium salts in the 

diet, such as calcium carbonate, and facilitates the 

release of ionized calcium from them. In contrast, 

recent prospective studies have provided results 

indicating that there are no significant alterations in 

bone mineral density or fracture risk among 

individuals who use PPI within a relatively brief to 

moderate period. It is suggested that the proposed 

mechanisms that may explain the association 

between a long period of PPIs therapy and decreased 

bone mineral density include hypochlorhydria which 

impairs the absorption of calcium. Additionally, 

gastrin-induced parathyroid hyperplasia, and 

inhibition of bone resorption by blocking local 

H+/K+ ATPase contribute to this association 14,42-44. 

1.1.8.1.4. Vitamin B12 

Cobalamin, a water-soluble vitamin, has been 

extensively linked to dietary protein. In a typical 

acidic state of the stomach, the release of 

hydrochloric acid and pepsin facilitates the liberation 

of cobalamin, allowing it to associate with salivary R 

proteins and then transfer cobalamin to intrinsic 

factor (IF). The cobalamin-intrinsic factor complex 

subsequently increases cobalamin absorption in the 

distal portion of the small intestine known as the 

terminal ileum. It is postulated that hypochlorhydria 

generated by PPIs can interfere with the 

abovementioned absorption mechanism, leading to 

anemia development 45. 

1.1.8.2. Infections 

1.1.8.2.1. Clostridium difficile Infection  

The potential of PPIs to increase the 

susceptibility to infection is due to their ability to 
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reduce stomach acidity, which could support 

bacterial colonization in the gastrointestinal system, 
46. A meta-analysis of 39 studies revealed that PPI 

users had a 74% higher probability of acquiring 

Clostridium difficile infection and a 2.5-fold 

increased risk of recurrent Clostridium difficile 

infection when compared to nonusers. In response to 

these findings, the FDA published a safety guidance 

in 2015, cautioning about the association between 

PPIs and Clostridium difficile infection 40. 

1.1.8.2.2. Pneumonia 

Decreasing the stomach PH by PPIs may 

promote the proliferation of aerobic bacteria in the 

stomach, resulting in microaspiration and lung 

colonization, potentially leading to pneumonia 47. 

Moreover, PPIs may impair neutrophil function, 

raising the risk of bacterial pneumonia 9. 

1.1.8.3.  Cardiovascular risk 

 To reduce the risk of gastrointestinal bleeding, 

PPIs are widely used in conjunction with antiplatelet 

therapy. Clopidogrel, a routinely prescribed 

antiplatelet medicine, is transformed to the active 

form by liver enzymes that also metabolize PPIs, 

implying that competitive metabolism by PPIs may 

result in diminished activation of clopidogrel, 

reduced antiplatelet effects, and elevated risk of 

cardiovascular events. Indeed, pharmacologic 

investigations have demonstrated that the 

coadministration of clopidogrel with PPIs results in 

decreased platelet inhibition, which prompted the 

FDA to publish a caution against the combination of 

clopidogrel with PPIs in 2009 48. Additionally, there 

is a great concern that the proton pump inhibitors 

cause hypomagnesemia which may be linked to an 

increased risk of serious ventricular arrhythmia and 

recurrent coronary heart disease because 

hypomagnesemia extends QT interval 44. 

1.1.8.4.  Dementia 

Based on the effect of PPIs on amyloid 

metabolism in animal models. It is proposed that 

PPIs use, particularly in elderly patients, is associated 

with an elevated risk of dementia. Indeed, PPIs 

promote amyloid-β and regulate its degradation by 

lysosomes in microglia. This causes a higher level of 

amyloid-β in mice brains, which is similar to the 

extracellular deposition of amyloid-β peptides found 

in the development of Alzheimer's disease. 

Furthermore, it was observed that patients on PPIs 

had a significantly greater incidence of dementia and 

Alzheimer's disease compared to patients not taking 

PPI drugs 49. Furthermore, PPIs may impair vitamin 

B12 absorption, which has been linked to cognitive 

deterioration 50.  

1.1.8.5. Bone mineral density 

The precise mechanism by which PPI use 

causes a decrease in bone mineral density and a 

subsequent increase in fracture risk is currently 

unknown. There are various suggested mechanisms 

by which PPIs reduce BMD and increase the risk of 

fracture 56. One of the possible biological 

mechanisms is the malabsorption of calcium 

attributed to hypochlorhydria, which then causes a 

negative calcium balance and subsequent 

hyperparathyroidism 67. Increased secretion of 

parathyroid hormone (PTH) induces calcium 

resorption from bones by activating osteoclasts 

leading to an increase in bone resorption 14. 

Moreover, hypochlorhydria causes 

hypergastrinemia, which can result in secondary 

hyperparathyroidism and a consequent decrease in 

bone mineral density 68. Additionally, PPIs lead to 

decreased absorption of vitamins B6, B9, and B12, 

as well as hyperhomocysteinemia, which has been 

associated with a detrimental impact on collagenous 

matrix synthesis by inhibiting the lysyl oxidase 

enzyme. Also, PPIs inhibit osteoblast activity by 

affecting the activity of alkaline phosphatase enzyme 
69. 

1.1.8.6. Other adverse effects 

The use of PPI may increase the risk of 

coronavirus disease 2019 (COVID-19). Patients who 

use these medications have a higher chance of testing 

positive for COVID-19 than those not taking PPIs. 

This relation could be explained by residual 

confounding 51. 

1.1.8.7.  Proton pump inhibitor adverse effects 

on the kidney: 

1.1.8.7.1. Kidney diseases: 

The nephron, which is a long and 

morphologically segmented tubule, is the basic 

functional unit of the kidney. A typical human kidney 

comprises around one million nephrons that consist 

of the glomerulus, Bowman's capsule, and a tubular 

system (the proximal tubule, the loop of Henle, and 

the distal tubule) 52. Nephrons collaborate to sustain 

the major renal functions which include waste 

elimination from the blood, maintenance of the 

body’s overall fluid balance, controlling of blood pH, 

and hormonal functions that stimulate red blood cell 

formation, bone health, and blood pressure 

regulation. Any of these functions may be impacted 

by the loss of a sufficient number of cells along any 

segment of the nephron 53. 

Kidney disease can be defined as either a 

reduced ability to filter metabolic products (such as 

creatinine) or a loss of protein in the urine 

(proteinuria) 54. The total amount of blood that is 

filtered via glomeruli is referred to as the glomerular 
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filtration rate (GFR) 55. It has been established that 

even little abnormalities in measures of kidney 

structure and function have been linked to an 

increased risk of developing disorders in different 

organ systems as well as mortality, all of which occur 

significantly more frequently than renal failure. 

Duration of greater than 3 months is defined as 

chronic, while a duration of 3 months or fewer is 

termed acute 56. 

Acute kidney injury (AKI), alternatively 

referred to as acute renal failure, is characterized by 

an abrupt decline in renal function or GFR, leading 

to azotemia and/or insufficient urine production. It is 

predominantly attributed to renal ischemia, 

nephrotoxic drugs, sepsis 57, and a reduction in 

effective intravascular volume. Additionally, a 

variety of ROS sources have been implicated in the 

development of AKI 58. In which alterations in renal 

functions occur within one week 56. 

Acute interstitial nephritis (AIN) is an instance 

of tubulointerstitial kidney injury mediated by the 

immune system. It may arise from medications, 

autoimmune disease, infections, and hematologic 

abnormalities, or as a reactive process 59. This 

disorder is frequently associated with an abrupt 

decline in renal function and is distinguished by the 

presence of inflammatory infiltrates and interstitial 

edema 59. In certain studies, AIN accounted for 1-3% 

of all renal biopsies 60.  AIN comprised 10-25% of 

the lesions when the study was restricted to patients 

with acute renal failure. According to these studies, 

AIN is a prevalent cause of acute renal dysfunction 

61. 

AIN has been estimated to contribute to 

approximately 8% of AKI cases 62, with drugs being 

responsible for 70-90% of these instances 60. The 

pharmacological drug classes most commonly 

associated with AIN include antibiotics, PPIs, and 

non-steroid anti-inflammatory drugs 61,62. PPIs are 

identified as the second most prevalent etiological 

factor contributing to drug-induced AIN (DI-AIN), 

accounting for 14%-64% of reported cases 45. 

Currently, the exact mechanism by which PPIs 

induce AIN is unknown. It is possible that PPIs or 

their metabolites deposit inside the tubulointerstitium 

of the kidney where they act as a hapten or directly 

trigger T cells to mediate AIN 63. 

Chronic kidney disease (CKD) is a condition 

characterized by a progressive decline in renal 

function over time, necessitating the use of renal 

replacement therapies such as hemodialysis and 

peritoneal dialysis in cases where it advances to end-

stage renal disease (ESRD) 58.  

CKD causes a decline in functioning nephrons 

as well as the compensation of nephron triggers. 

Molecular and cellular events promote compensatory 

growth of residual tissue, however, in certain 

instances, this compensatory process becomes 

pathological, leading to the development of renal 

lesions and End-stage renal disease 64. In the clinic, 

the most usually estimated parameter are estimated 

GFR <60 ml/min, or the presence of kidney damage 

markers, or both, for at least 3 months 65. It has been 

reported that 11–13% of the global population suffers 

from CKD 66. It is often associated with diabetes and 

hypertension 67 and is responsible for a range of 

complications including cardiovascular diseases 

(CVDs), anemia, kidney disease deterioration, acute 

kidney injury, mineral and bone problems, and 

cognitive impairment 66. CKD is anticipated to be the 

fifth greatest cause of mortality globally by 2040 68.  

The primary distinction between AKI and CKD 

in each of these criteria is the duration and rate of 

time at which renal function declined, with CKD 

characterized by functional and structural 

disturbances that persist longer than 3 months 53,69,70. 

Renal morphology and function often improve as a 

consequence of AKI repair mechanisms, whereas 

CKD repair mechanisms lead to aberrant cell 

proliferation, cell hypertrophy, and increased 

extracellular matrix (ECM) accumulation 71. 

Excessive deposition and accumulation of ECM 

results in renal fibrosis 72. 

Kidney fibrosis is the most prevalent clinical 

characteristic and the ultimate manifestation of CKD, 

exhibiting morphological attributes such as 

glomerulosclerosis, tubule atrophy, interstitial 

chronic inflammation 73, and fibrogenesis, in addition 

to vascular rarefaction. Fibrosis occurs as a 

consequence of impaired wound healing, resulting in 

excessive deposition and accumulation of ECM 74. 

Fibrotic alterations may develop in the 

glomerulus, which is known as glomerulosclerosis, 

or in the tubules, which is known as tubulointerstitial 

fibrosis. Notably, glomerulosclerosis and 

tubulointerstitial manifest similar biological 

alterations that include the depletion of epithelial 

cells and their associated vascular capillary bed, as 

well as the upregulation of activated myofibroblasts, 

extracellular matrix, and inflammatory cells 75. This 

serious outcome is typically the result of both 

underlying complicated cellular processes such as 

epithelial-to-mesenchymal transition, fibroblast 

activation, monocyte-macrophage infiltration, and 

cellular apoptosis, as well as the activation of 

signaling molecules such as transforming growth 

factor beta (TGFβ) and angiotensin II 76. 
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The activation of myofibroblast and the 

subsequent ECM buildup are instances of 

significance in kidney fibrosis72. The principal 

molecules and cells associated with the progression 

of renal fibrosis and their activity in the biological 

process of renal fibrotic development, including the 

Ang II, TGFβ, connective tissue growth factor 

(CTGF), plasminogen activator inhibitor-1 (PAI1), 

nuclear factor-ĸB (NF-ĸB), fibroblasts, and 

proteins76. 

1.1.8.7.2. Proton pump inhibitor (PPI) induced 

kidney diseases: 

Omeprazole-induced AIN was initially 

reported in 1992 77, and other cases of AIN due to 

omeprazole have been documented since then. 

Pantoprazole-induced AIN was first published in 

2004 78, and rabeprazole-induced AIN was first 

reported in 2005 by Geevasinga 59. It is postulated 

that PPIs-induced AIN may result from an allergic 

response to the medicine or one of its metabolites. 

These substances might potentially accumulate in the 

renal tubulointerstitium and function as haptens, or 

directly stimulate T-cells, leading to the development 

of AIN 77. AIN is difficult to identify since the 

symptoms are nonspecific, such as oliguria, lethargy, 

anorexia, nausea, and vomiting 78,79. PPIs are now 

known to be one of the main global causes of drug-

induced AIN 27. The most prevalent adverse renal 

consequence is AIN 80. 

The interval between initiating PPI medications 

and the onset of clinical AIN is quite varied. In 

published cases, the symptoms often appear 

anywhere from 1 week to 9 months after the first 

exposure to PPIs, with the mean delay to clinical 

manifestation in instances that have been 

documented is 9.9 weeks 81. It has been documented 

that 30-70% of the patients who suffer from drug-

induced AIN have insufficient recovery of the renal 

function allowing the inflammatory tubulointerstitial 

process to advance to chronic irreversible interstitial 

fibrosis over time, which might develop CKD and 

eventually ESRD 82,83. 

One potential contributing factor to the onset of 

chronic interstitial nephritis in patients with PPIs-

induced AIN is the possibility of a delayed or 

inaccurate diagnosis resulting from the presence of 

atypical clinical symptoms associated with allergic 

reactions generated by PPIs usage.  Due to the 

protracted duration required for establishing a 

diagnosis of AIN after the onset of symptoms, certain 

individuals unavoidably develop chronic renal 

interstitial fibrosis before the initiation of treatment. 
77. 

The mechanisms underlying the links between 

PPIs usage and AKI could be interstitial nephritis 4. 

The majority of AKI episodes have been identified as 

AIN. AKI has been correlated with the development 

of CKD and progression to ESRD 82. The 

utilization of PPIs may present a plausible risk factor 

for the development of CKD, potentially 

through recurring AKI. The precise mechanism 

underlying this correlation remains unclear; 

however, the potential factors that may contribute to 

this association encompass the development of acute 

interstitial nephritis, which is an immune-mediated 

response that can precipitate a reduction in 

glomerular filtration rate and adverse renal 

consequences 84. Other proposed hypotheses include 

suppression of the lysosomal proton pump, thereby 

impairing endothelial lysosomal acidification and 

enzyme function, a decrease in nitric oxide 

formation, and an increase in superoxide anion 

production. These can result in decreased endothelial 

proliferation and angiogenesis as well as accelerated 

endothelial aging 84,85, or hypomagnesemia which 

may cause endothelial dysfunction 82,86 by inducing 

pro-inflammatory and pro-atherogenic events 85. as 

shown in figure (2). 

2. CONCLUSIONS 

PPIs are a group of drugs that have extensive 

global utilization. They are commonly employed in 

the management of several acid-related disorders. 

Among the different types of acid-suppressing drugs, 

PPIs were found to be the preferred and principal 

option of treatment. These agents were deemed to be 

safe when given rationally and utilized according to 

the physician’s instructions. The use of this class of 

antisecretory drugs for a short time has been 

authorized by the FDA and subsequently prevented 

their usage for extended periods. Usually, short-term 

PPIs treatment at the recommended doses does not 

pose any adverse effects or potential hazards. 

Evidence currently available indicates that the use of 

PPIs is linked to an increased risk of both acute and 

chronic kidney disease, hypomagnesemia, C difficile 

infection, and osteoporotic fractures. So it is 

necessary to monitor serum creatinine and 

magnesium levels in patients using PPIs, especially 

those using high doses. 

Furthermore, it is imperative to give careful 

consideration to extended courses of PPI 

prescriptions, particularly in geriatric individuals 

with substantial comorbidities and concurrent 

administration of multidrug treatments. Finally, PPI 

drugs should be used with caution, and with a clear 

clinical indication. The benefits yielded by PPIs must 

be monitored, and drug therapy must be terminated 

immediately as it is no longer required. 
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