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Abstract: This study aims to investigate the phytochemical composition, in-vitro (anti-oxidant, anti-

inflammatory, anti-diabetic) activities of the lipoidal matter (petroleum ether extracts: PEE1 and PEE2) of the 

leaves of Dypsis decaryi (D. decaryi) and Dypsis leptocheilos (D. leptocheilos) Family Arecaceae cultivated in 

Egypt. The unsaponifiable and saponifiable fractions (USF and SF) of D. decaryi and D. leptocheilos were 

assessed using GC/MS analysis. The identified compounds in the USF of both species represented 94.63 and 

92.46 %, of which squalene (18.23, 17.99 %), α-amyrin methyl ether (11.84 and 9.10 %) and phytol (8.97, 

7.21%) were the major compounds, respectively. In the saponifiable fractions (SF), the percentage of identified 

saturated fatty acids were (62.49 and 79.42 %) with methyl palmitate (38.57 and 35.37%) as the major 

constituent, while the percentage of identified unsaturated fatty acids were (14.30 and 9.93 %) with methyl 

oleate (11.14 and 9.23%) as the major compound, respectively. PEE of both species exhibited significant anti-

oxidant capacities in scavenging free radicals by DPPH (IC50= 29.8±0.62 and 28.5±1.43 μg/mL) and ABTS 

(IC50=173.98±8.23 and 12.68±1.08 μg/mL) methods compared to ascorbic acid (IC50=38.72±0.26 and 

10.65±0.81 μg/mL). PEE1 and PEE2 inhibited both COX-1 (IC50= 0.67±0.06 and 0.7±0.01 μM) and COX-2 

(IC50= 0.049±0.001 and 0.103±0.006 μM) enzymes compared to indomethacin (IC50= 0.6±0.1 and 0.079±0.001 

μM). Furthermore, PEE1 and PEE2 possessed moderate anti-diabetic activity through in-vitro inhibition of α-

amylase (IC50=107.16±4.57 and 41.81±2.85 μg/mL) compared to acarbose (IC50=14.54±0.86 μg/mL). In-silico 

study using molecular based docking of α-amyrin methyl ether, arundoin, cycloartenol and 24-

methylenecycloartanol revealed good binding tendencies to α-amylase.  

 

Keywords: Dypsis decaryi, Dypsis leptocheilos, GC/MS analysis, Anti-oxidant, Anti-inflammatory, Anti-

diabetic activities, in-silico, Molecular based docking 
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1. INTRODUCTION 

Arecaceae is a family of dominant perennial trees, 

sometimes known as palm trees. This is a family of 

monocots order Arecales, it includes flowering 

plants, and occurs in tropical, subtropical, and mild  

 

 

 

climates and has about 181 genera and 2600 species1, 

2. The family Arecaceae comprises several species  

that are primarily found in tropical and sub-tropical 

ecological zones. These zones also include the 

Arabian deserts, Africa, Latin America, South and 
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Southeast Asia, and South-East Asia3. Phenolic 

acids, flavonoids, tannins, amino acids, alkaloids, 

fatty acids, steroids, carotenoids and terpenoids are 

reported in Arecaceae family4.  

Many Arecaceae species are reported for their anti-

oxidant, anti-inflammatory, anti-diabetic, 

antimalarial, anti-parasitic, anti-protozoal, 

antineoplastic, hepatoprotective, enzyme-inhibition, 

anti-fungal, anti-proliferative, and antibacterial 

activities5. 

 

Genus Dypsis is one of the largest genera in family 

Arecaceae, with over 170 species. There have been 

very few phytochemical and biological 

investigations related to Dypsis. Phytochemical 

screening of some species of Dypsis (D. leptocheilos 

and D. lutescens) revealed the presence of 

flavonoids, sugars, stilbenes and steroids6,7,8. Some 

studies reported that Dypsis species possessed 

different activities such as: hepatoprotective8, anti-

oxidant9,10, cytotoxic11, anti-diabetic12, 

gastroprotective13 and anti-obesity14 activities. 

Ibrahim et al reported the isolation of five flavonoids 

along with their in-silico molecular based docking 

study and the anti-oxidant, antimicrobial and 

cytotoxic activities of the ethyl acetate and aqueous 

methanol extracts of D. leptocheilos6. A novel 

thermo stable lectin isolated from D. decaryi seeds 

exhibited bacteriostatic and antifungal effects15. 

 

Oxidative stress is a physiological imbalance 

between anti-oxidant scavenging mechanisms and 

reactive oxygen species (ROS) causing cell 

damage16. It causes the release of highly reactive free 

radicals17, the onset of numerous chronic illnesses, 

including cancer, diabetes, autoimmune, heart 

disease, and neurodegenerative disorders. It also 

hastens human aging18,19. In diabetes mellitus (DM), 

hyperglycemia causes the glycation process to 

oxidize glucose to reactive oxygen species. This can 

damage various tissues and organs, leading to 

symptoms like cardiomyopathy, nephropathy, 

neuropathy, and retinopathy. It can also raise the 

body's levels of lipid peroxidation20. 

 

 Recently, there has been a lot of interest in this 

medical state, and researchers have adopted 

numerous anti-diabetic medications to address it. But 

over the years, these medications haven't been able 

to adequately control the complications that emerge 

from oxidative stress. Utilizing the plant extracts is 

gaining attention in halting various diseases and 

disorders, and this is because of the appreciable 

phytochemicals included in them that aid in the 

removal of the free radicals from the body’s 

systems21. 

The breakdown of sugars and the increase in blood 

glucose are aided by the digestive enzymes α-

amylase and α-glucosidase. Through suppression of 

α-amylase and α-glucosidase activity, natural 

compounds with potential anti-oxidant activity can 

be used to treat DM.  The inhibition of pancreatic α-

amylase might affect the digestion and absorption of 

carbohydrates, hence regulating blood glucose 

levels. Specifically, it transforms starch into a 

mixture of oligosaccharides intermediates22,23. 

Numerous phytochemicals with α-amylase 

inhibitory action have been found in a wide range of 

plant species and have been suggested for the 

treatment of diabetes24,25. 

 

Not only many studies have supported that there is an 

interdependent relationship between oxidative stress 

and inflammation as oxidative stress can worsen the 

inflammatory process and vice versa26, but also 

hyperglycemic-induced oxidative stress in diabetic 

patients is believed to cause local and systemic 

inflammation27,28. One of the body's natural defense 

mechanisms is inflammation. It displays as swelling, 

redness, and discomfort in the affected area in 

response to injury or infection. Numerous hydrolytic 

enzymes are released, fluids extravasate, the injured 

site is damaged and repaired, vasodilation occurs, 

blood vessel permeability increases, and blood 

pressure rises as a result of inflammation29.  

 

Such type of inflammatory responses also 

contributes to the activation and the release of free 

radicals from different cells of immune system, 

which causes localized tissue damage and lipid 

peroxidation30. Conventional anti-inflammatory 

medications have serious adverse effects that restrict 

their usage, including hemorrhagic gastritis, 

gastrointestinal toxicity (diarrhea/colitis), and 

hypertension 31-33. It is crucial to discover efficient 

anti-inflammatory medications that both moderate 

inflammation and decrease the formation of ROS and 

free radicals; this is seen to be a promising approach 

for both preventing and treating conditions linked to 

chronic inflammation.  

 

This is the first study of the chemical investigation of 

PEE of both D. decaryi and D. leptocheilos and the 

in-vitro evaluation of their anti-oxidant, anti-

inflammatory and anti-diabetic activities as well as 

an in-silico molecular based docking study of anti-

diabetic activity of α-amyrin methyl ether, arundoin, 

cycloartenol and 24-methylenecycloartanol, aiming 

to discover natural extracts enriched with bioactive 

compounds having good anti-oxidant activity and 

consequently could be used in the treatment of 

several diseases.   
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2. METHODS 

  2.1. Plant Material 

The leaves of Dypsis decaryi (Jum.) Beentje & 

J. Dransf and Dypsis leptocheilos (Hodel) Beentje & 

J. Dransf were collected from Al-Abd farm at Cairo-

Alexandria desert road in August 2019 following 

institutional, national, and international guidelines. 

The plants were identified by Mrs. Terase Labib, 

Department of Flora and Taxonomy, Al-Orman 

Botanical Garden, Giza, Egypt. Two voucher 

specimens no. (DD 719 and DL 719) were kept in the 

herbarium in the Department of Pharmacognosy and 

Medicinal Plants, Faculty of Pharmacy (Girls), Al-

Azhar University, Cairo, Egypt. 

 

    2.2. Chemicals, reagents  

Petroleum ether (b.p. 60-80 °C ether (Alfa 

Chemika, India). Potassium hydroxide, anhydrous 

sodium sulfate (Research-Lab Fine Chem. Industries, 

Mumbai, India). DPPH (1, 1-diphenyl-2-picryl-

hydrazil), ABTS (2, 2′-azino-bis-(3-

ethylbenzothiazolin-6-sulfonic acid), ascorbic acid 

and acarbose were purchased from Sigma- Aldrich, 

Saint Louis, MO, USA. Indomethacin was obtained 

from Pharco, Egypt. 

 

2.3. Preparation of petroleum ether extract 

The leaves of both species were collected; 

shade dried and grinded to fine powder using a 

mechanical grinder. One kilogram of the plants was 

weighed, transferred into round flask, refluxed with 

petroleum ether (b.p. 60-80 °C) for 48 hours and then 

filtered. The filtrates were concentrated under 

pressure using rotary evaporator (Heidolph 4000, 

Germany) to obtain (65 and 59 grams) of PEE and 

kept at a refrigerator for further use. 

2.3. a. Preparation of unsaponifiable (USF) and 

saponifiable (SF) fractions 

This was carried out by the method described 

by El Sayed et al 34. 

2.3. b. Preparation of methyl esters of fatty 

acids (FAME) 

This was performed according to the method 

adopted by El Sayed et al 34. 

2.3. c. GC/MS analyses of USF and FAME 

GC-MS analyses of the USF and FAME of both 

plants were carried out at National Research Center, 

Giza, Egypt. The analyses were performed using a 

TRACE GC Ultra Gas Chromatographs (THERMO 

Scientific Corp., USA), coupled with a thermo mass 

spectrometer detector (ISQ Single Quadrupole Mass 

Spectrometer) with TG-Wax MS non polar column 

(30 m × 0.25 mm ID × 0.25 µm film thickness). With 

an injection volume of 1µL (Split ratio 1:10) and 

helium gas (99.99%) utilized as the carrier gas at a 

constant flow rate of 1 mL/minute, the temperature 

program was as follows: 60 °C for 1 min; rising at 

4°C /min to 300 °C and held for 15 min.  The 

temperatures of the detector and the injection port 

were both set to 280°C. Diluted samples (1:10 

hexane, v/v) of 0.2 µL of the mixtures were always 

injected. By using an electron ionization system (EI) 

with an ionizing energy of 70 eV and a spectral range 

of m/z 35-550, mass spectra were obtained. The 

compounds were identified by comparing their mass 

fragmentation patterns and retention times to those 

found in the Wiley spectral library collection, the 

NIST (National Institute of Standards and 

Technology) library, and/or published data outlined 

by Adams35. 

 

2.4. Evaluation of anti-oxidant activity of PEE 

(Free radicals scavenging activity) 

2.4. a. DPPH scavenging activity 

The DPPH radical scavenging assay was 

performed according to the method reported by 

Ibrahim et al 36. Using a UV spectrophotometer 

(Jasco, serial No. C317961148, Japan), the 

absorbance was measured at 517 nm. 

2.4. b. ABTS radical scavenging activity 

Anti-oxidant activity was measured using the 

ABTS radical scavenging method in accordance with 

the protocols outlined by Sanchez et al and Ling et al 
37, 38.  

 

2.5. Evaluation of anti-inflammatory activity of 

PEE 

A kit from Cayman Chemical Company (Ann 

Arbor, USA) was used to measure the anti-

inflammatory efficacy in-vitro. Determination of the 

cyclooxygenases (COX-1 and COX-2) inhibition 

efficacy was performed as described by Blobaum and 

Marnett39. 

 

2.6. Evaluation of anti-diabetic activity of PEE 

(α-amylase inhibitory activity) 

The α-amylase inhibitor screening kit (Catalog 

No. K482-100; Bio Vision, USA) manufacturer's 

protocol was followed while performing the 

experiment on a 96-well plate, the absorbance was 

measured at optical density (OD) = 405 nm using 

multi-well spectrophotometer (ELISA reader).  

 

2.7. Statistical analysis and determination of 

IC50 values  

Each experiment was performed three times. 

The data were presented as mean±SD (standard 

deviation), analysis of data was carried out using 

two-way ANOVA followed by Tukey’s multiple 

comparisons test. The IC50 values were established 

by one-way ANOVA followed by Tukey’s test as 
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post-hoc test and the levels of significance were 

determined at P<0.05. GraphPad Prism (GraphPad 

software Inc. version 5, USA) was used for all the 

statistical analysis. 

 

2.8. In-silico molecular docking study of 

selected compounds as α-amylase inhibitors 

 

 The 3D crystal structure of human α-amylase 

protein was retrieved from the Protein Data Bank 

(http://www.rcsb.org/pdb) (PDB ID: 2qv4, 

resolution: 1.97 Å). All water molecules were 

removed from the downloaded protein structure, and 

the hydrogen atoms were added. The 2D structures 

of four selected phytoconstituents (ligands) were 

downloaded from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov) and saved in 

MDL-SD file format. The four tested 

phytoconstituents were α-amyrin methyl ether (CID 

612819), arundoin (CID 12308619), cycloartenol 

(CID 92110) and 24-methylenecycloartanol (CID 

94204) with acarbose being both the reference drug 

(CID 41774) and the co-crystalized ligand. Energy 

minimization was performed by applying MMFF94 

force field40. Then, the hydrogen atoms were hidden 

to make the areas of interaction clearer. The present 

in-silico molecular based docking study was 

performed using Autodock vina 4.2.6 version 

software.  The molecular docking was carried out 

within a grid box with a number of points in xyz of 

52 × 46 × 40 Å box, which encloses the ligand. The 

grid box spacing was set to 0.3 Å, and grid center 

designated at coordinates for the center of active site 

of the protein (x, y, z):  9.332; 42.784; 24.955. The 

2D and 3D molecular docking simulation of acarbose 

and selected phytoconstituents were shown in Figure 

(5). 

The binding affinity between the protein and 

ligands was measured in units of Gibbs free energy 

(ΔG) and about twenty poses were predicted then the 

most suitable orientations, affinity scores (Kcal/mol), 

and root mean square deviation (RMSD) values were 

captured, as shown in Table (4). Redocking of the co-

crystalized ligand (acarbose) was performed for 

validating docking protocol (RMSD 0.78 Å). The 

analysis of binding interactions was performed using 

Discovery studio visualizer 2016. 

3. RESULTS 

3.1. GC/MS analyses  

GC/MS chromatograms of USF and FAME of D. 

decaryi and D. leptocheilos leaves are represented in 

Figure (1) and the identified compounds are listed in 

Tables (1) and (2). 

  

 

Unsaponifiable identified compounds. 

 

Table 1 includes fifty-four and fifty three compounds 

of the USF1 and USF2 of both D. decaryi and D. 

leptocheilos, respectively. The total identified 

percentages were 94.63 % and 92.46%. Squalene 

was the major identified compound (18.23% and 

17.99%) followed by α-amyrin methyl ether (11.84% 

and 9.10%) and phytol (8.97% and 7.21%). In 

addition, sterols were presented by 3.69 % and 3.71 

%; β-sitosterol was detected in appreciable 

percentage in both species (3.54% and 3.05%). 

Triterpenes was the major class present in both USF 

constituting (37.02 % and 36.59 %). The USF of both 

species contained straight chain hydrocarbons (3.88 

% and 17.97 %) and several aromatic hydrocarbons 

(37.15 % and 11.31 %). Butylated hydroxytoluene 

(4.54 %), 2, 4-bis (1, 1-dimethylethyl)-Phenol (2.93 

%) and 6, 10, 14-trimethyl-2-Pentadecanone (4.33 

%) were characteristic oxygenated compounds in 

USF of D. leptocheilos.  

 

Saponifiable identified compounds. 

Table 2 represents thirteen and eighteen compounds 

of the saponifiable fraction; FAME of D. decaryi and 

D. leptocheilos with a total percentage of 76.79% and 

89.35%, respectively. Methyl palmitate 

(hexadecanoic acid, methyl ester) was the major 

identified compound (38.57% and 35.37%) followed 

by methyl oleate (9-octadecenoic acid, methyl ester; 

11.14% and 9.23%). Methyl tetradecanoate was 

detected in considerable percentage (31%) in the 

saponifiable fraction of D. leptocheilos 

3.2. Evaluation of anti-oxidant activity 

3.2. a. DPPH scavenging activity 

The most popular technique for quantifying free 

radical scavenging is DPPH radical scavenging41. 

Figure 2A illustrates the percentage inhibition of 

DPPH scavenging ability of PEE in comparison with 

ascorbic acid as a reference standard at different 

concentrations. Both PEE1 and PEE2 revealed an 

outstanding ability to eliminate the DPPH radical 

(92.08 and 92.93%) at concentration 1 mg/L with 

IC50 values of 29.8±0.62 and 28.5±1.43 μg/mL, 

respectively. Ascorbic acid exhibited 98.57% 

scavenging effect at concentration 1 mg/L with an 

IC50 value of 38.72±0.26 μg/mL, respectively as 

indicated in Table (3). 
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Figure 1. GC/MS chromatograms of USF and FAME of D. decaryi (1) and D. leptocheilos (2) leaves. 

A:  USF1, B: USF2, C: FAME1 and D: FAME2 

A B 

C D 
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Table1. GC/MS analysis of USF of D. decaryi and D. leptocheilos leaves. 

Compounds Rt/min RRt B.p. M.wt M. formula Area % 

D. dec. D. lept. 

1. Aliphatic compounds 

a. Alkanes 

2 –Ethyl hexanol 6.06 0.12 57 130 C8H18O - 1.56 

n-Dodecane 10.57 0.21 57 170 C12H26 - 0.31 

n-Tetradecane 16.93 0.34 57 198 C14H30 - 0.34 

n-Hexadecane 22.93 0.46 57 226 C16H34 - 0.22 

n-Heptadecane 26.68 0.53 57 240 C17H36 0.21 - 

n-Octadecane 28.66 0.57 57 254 C18H38 0.15 0.19 

n-Nonadecane 31.90 0.63 57 268 C19H40 0.15 - 

n-Tricosane 41.00 0.81 57 324 C23H48 0.10 - 

1-Eicosanol 41.25 0.82 55 298 C20H42O 0.20 - 

n-Pentacosane 44.48 0.88 57 352 C25H52 0.14 0.21 

1-Docosanol 45.37 0.90 55 326 O46H22C 0.64 - 

n-Hexacosane 46.92 0.93 57 366 C26H54 0.20 - 

n-Heptacosane 48.20 0.96 57 380 C27H56 0.20 0.31 

1-Tetracosanol 49.21 0.98 55 354 O50H24C 0.77 - 

n-Nonacosane 51.69 1.03 57 408 C29H60 0.32 1.18 

n-Hentriacontane 54.95 1.09 57 436 C31 H64 1.05 2.62 

n-Dotriacontane 56.48 1.12 57 450 C32H66 - 0.36 

n-Tritriacontane 58.04 1.15 57 464 C33H68 0.55 0.85 

Subtotal 4.68 8.15 

b. Alkenes 

1-Decene 4.79 0.095 55 140 C10H20 - 0.47 

1-Dodecene 10.37 0.21 55 168 C12H24 - 0.88 

1-Tetradecene 16.76 0.33 55 196 C14H28 - 1.72 

1-Hexadecene 22.79 0.45 55 224 C16H32 - 2.11 

1-Octadecene 28.55 0.57 55 252 C18H34 0.11 1.89 

1-Eicosene 33.68 0.67 55 280 C20H40 0.17 1.71 

1-Docosene 38.28 0.76 55 308 C22H40 0.21 1.12 

1-Tetracosene 42.47 0.84 55 336 C24H48 0.15 0.82 

9-Hexacosene 46.34 0.92 55 364 C26H52 - 0.66 

1-Dotriacontene 57.21 1.14 55 448 C32 H64 0.17 - 

Subtotal 0.81 11.38 

2. Aromatic hydrocarbons 

5-Phenyl decane 22.06 0.43 91, 147 218 C16H26 0.47 - 

4- Phenyl decane 22.36 0.44 91, 133 218 C16H26 0.59 - 

3- Phenyl decane 22.95 0.45 91, 119 218 C16H26 0.94 - 

2-Phenyl decane 23.15 0.46 105 218 C16H26 1.26 0.16 

6- Phenyl undecane 23.87 0.47 91, 161 232 C17H28 0.92 0.17 

5- Phenyl undecane 23.99 0.48 91, 147 232 C17H28 1.84 0.36 

4- Phenyl undecane 24.29 0.48 91, 133 232 C17H28 1.94 0.34 

3- Phenyl undecane 24.93 0.49 91, 119 232 C17H28 2.46 0.52 

2- Phenyl undecane 26.13 0.52 105 232 C17H28 3.68 0.82 
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6- Phenyl dodecane 26.75 0.53 91, 161 246 C18H30 1.95 0.37 

5- Phenyl dodecane 26.88 0.53 91, 147 246 C18H30 1.81 0.49 

4- Phenyl dodecane 27.25 0.54 91, 133 246 C18H30 1.93 0.42 

3- Phenyl dodecane 27.90 0.55 91, 119 246 C18H30 2.39 0.74 

2- Phenyl dodecane 29.05 0.58 105 246 C18H30 3.47 1.18 

6- Phenyl tridecane 29.50 0.59 91, 161 260 C19H32 2.43 0.99 

5- Phenyl tridecane 29.68 0.59 91, 147 260 C19H32 1.69 0.78 

4- Phenyl tridecane 30.72 0.61 91, 133 260 C19H32 2.46 - 

3- Phenyl tridecane 31.35 0.62 91,119 260 C19H32 1.98 1.14 

2- Phenyl tridecane 31.76 0.63 105 260 C19H32 2.94 2.83 

Subtotal 37.15 11.31 

3. Aromatic compounds 

Butylated hydroxyanisole 20.31 0.40 165 180 C11 H16 O2 0.67 - 

Butylated hydroxytoluene 20.49 0.41 205 220 C15H24O 0.39 4.54 

2,4-bis(1,1-dimethylethyl)- Phenol 21.17 0.42 191 206 C14H22O - 2.93 

Dihydroactinidiolide 21.93 0.44 111 180 C11H16O2 - 0.56 

Vitamin E 55.83 1.11 165 430 C29H50O2 0.22 0.35 

Subtotal 1.28 8.38 

4. Sterols 

2-Methylene-cholestane-3-oL 57.45 1.14 69 400 C28H48O - 0.41 

Stigmasterol 57.83 1.15 55 412 C29H48O - 0.25 

Campesterol 58.32 1.16 105 400 C28H48O 0.15 - 

β-Sitosterol 58.87 1.17 43 414 C29H50O 3.54 3.05 

Subtotal 3.69 3.71 

5. Terpenes 

Neryl acetone  18.88 0.38 69 194 C13H22O - 0.24 

6,10,14-trimethyl-2-Pentadecanone 30.06 0.59 58 268 C18H36O - 4.33 

5E, 9E-Farnesyl acetone 31.91 0.63 69 262 C18H30O 0.14 0.31 

Phytol 36.72 0.73 71 296 C20H40O 8.97 7.21 

Isophytol 37.94 0.75 71 296 C20H40O 0.13 - 

4,8,12,16-Tetramethylheptadecan-4-olide 41.94 0.83 99 324 C21H40O2 0.76 0.85 

Squalene 50.32 1 69 410 C30H50 18.23 17.99 

2,6,10,15,19,23-hexamethyl-1,6,10,14,18,22-

Tetracosahexaen-3-ol 

52.19 1.04 69 426 O50H30C 1.92 1.23 

α-Amyrin methyl ether 58.43 1.16 218 440 C31H52O 11.84 9.10 

Cycloeucalenol 59.35 1.18 69 426 O50H30C 0.15 0.51 

Lupeol 59.99 1.19 69 426 C30H50O 0.52 - 

3β-Methoxyfern-9(11)-ene (arundoin) 60.15 1.20 71 440 O52H31C - 5.44 

Cycloartenol 60.78 1.21 69 426 O50H30C 0.79 2.32 

Betulin  61.05 1.21 189 442 C30H47O3 1.20 - 

3-β-24-Methylenecycloartanol 61.72 1.23 55 440 C31H52O 2.37 - 

Subtotal 46.26 48.44 

Total identified compounds 94.63% 92.46% 
*RRt: Retention time relative to Squalene 
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3.2. b. ABTS scavenging activity 

A decolorization assay called the ABTS scavenging 

capacity method assesses the antioxidants' ability to 

react directly with ABTS radicals produced by a 

chemical process42. PEE2 showed an impressive 

ability to scavenge the ABTS radical with IC50 value 

of 12.68±1.08 μg/mL with 91.76 % scavenging effect 

at concentration 1 mg/L compared to ascorbic acid 

(IC50 value of 10.65±0.81 μg/mL) (Figure 2B; Table 

3). PEE1 showed a moderate activity with IC50 value 

of 173.98±8.23 μg/mL with 79.48 % scavenging 

effect at concentration 1 mg/L. 

 

3.3. Evaluation of anti-inflammatory activity of 

PEE via inhibition of COX-1 and COX-2 enzymes 

The anti-inflammatory activity of PEE was in-vitro 

evaluated by inhibiting the cyclooxygenases 

enzymes COX-1 and COX-2, which catalyze the 

Table 2. GC/MS analysis of FAME of D. decaryi and D. leptocheilos leaves 

 

Compounds Rt/min RRt B.p. M.wt M. formula Area % 

D. dec. D. lept. 

a. Saturated FAME 

Methyl dodecanoate 4.90 0.38 74 214 C13H26O2 2.19 2.55 

Methyl tetradecanoate 8.58 0.66 74 242 C15H30O2 8.95 31.00 

Methyl pentadecanoate 11.67 0.89 74 256 C16H32O2 0.29 - 

Methyl hexadecanoate 

(methyl palmitate) 

12.98 1.00 74 270 C17H34O2 38.57 35.37 

Methyl heptadecanoate 15.20 1.17 74 284 C18H36O2 0.87 1.09 

Methyl octadecanoate 

(methyl stearate) 

17.37 1.34 74 298 C19H38O2 - 4.47 

Methyl eicosanoate 21.52 1.66 74 326 C21H42O2 2.54 0.99 

Methyl-4-methoxy-4,8,12,16-

tetramethylheptadecanoate 

22.43 1.73 145 370 C23H46O3 - 0.40 

Methyl heneicosanoate 23.48 1.81 74 340 C22H44O2 - 0.10 

Methyl docosanoate 25.40 1.96 74 354 C23H46O2 3.21 0.80 

Methyl tricosanoate 27.22 2.09 74 368 C24H48O2 - 0.18 

Methyl tetracosanoate 

(methyl lignocerate) 

29.02 2.24 74 382 C25H50O2 5.87 1.27 

Methyl hexacosanoate 32.35 2.49 74 410 C27H54O2 - 0.44 

Methyl octacosanoate 35.51 2.74 74 438 C29H58O2 - 0.71 

Methyl triacontanoate 38.71 2.98 74 466 C31H62O2 - 0.05 

Subtotal 62.49 79.42 

b. Unsaturated FAME 

Methyl tridecenoate 5.96 0.46 55 226 C14H26O2 1.01 0.52 

Methyl heptadecenoate 14.34 1.10 55 282 C18H34O2 1.41 - 

Methyl-7,10-octadecadienoate 16.68 1.28 67 294 C19H34O2 0.46 0.18 

Methyl-9-octadecenoate 

(methyl oleate)  

16.84 1.29 55 296 C19H36O2 11.14 9.23 

Methyl-10-nonadecenoate 20.06 1.55 55 310 C20H38O2 0.28 - 

Subtotal 14.30 9.93 

Total identified compounds 76.79% 89.35% 
*RRt: Retention time relative to Squalene 
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conversion of free arachidonic acid to prostaglandin 

H2 (PGH2), the committed step in prostaglandin 

(PG) formation. PGH2 is converted into the other 

PGs or thromboxane (TxA2) by specific synthases. 

NSAIDs inhibit both forms of COX at approximately 

equivalent concentrations43, 44. 

PEE1 and PEE2 exhibited dose-dependent inhibition 

effect on these two cyclooxygenases enzymes, the 

highest inhibition capacities of COX-1 were 74% and 

75%  at 100 μM and COX-2 was 77% at 100 μM for 

both extracts,  additionally the IC50 values  of 

COX-1 and COX-2 were 0.67±0.06,  0.7±0.01 μM  

and 0.049±0.001, 0.103±0.006 μM  for PEE1 and 

PEE2 in comparison with  the reference drug 

indomethacin which exhibited 74% inhibition 

activity for both cyclooxygenases  and  with IC50 

values of 0.6±0.1 and 0.079±0.001 μM  for COX-1 

and COX-2, respectively (Figure 3; Table 3). 

 

3.4. Evaluation of anti-diabetic activity through α-

amylase inhibition activity 

 

PEE1 and PEE2 inhibited α-amylase enzyme with 

inhibitory property 68.27 and 76.02% at conc. 

1mg/mL and with IC50 values of 107.16±4.57 and 

41.81±2.85 μg/mL. Acarbose revealed 96.73% 

inhibitory property of α-amylase enzyme at conc. 1 

mg/mL (IC50 value of 14.54±0.86 μg/mL) (Figure 4; 

Table 3). 

 

3.5. Molecular docking study 

 
The binding energy of acarbose was -8.98 Kcal/mol, 

against human α-amylase protein. Thirteen hydrogen 

bonds were observed by interaction with Ala106, 

Asn105, Thr163, Gln63, Trp59, His299, Asp300, 

Glu233, Arg195, and His201 (Figure 5A). α-Amyrin 

methyl ether exhibited a binding energy -6.61 

Kcal/mol, with 13 hydrophobic π-interactions were 

observed with Trp59, Leu162, His305, Ile235, 

His201 and Ala198 (Figure 5B). 

 

 Moreover, arundoin exhibited a binding energy of -

6.32 Kcal/mol. Seven hydrophobic π-interactions 

were observed with Trp59, His305, Leu165, and 

Val107 (Figure 5C). Cycloartenol showed a binding 

energy -7.55 Kcal/mol. It formed 10 hydrophobic π-

interactions with Tyr62, Leu165, Trp59, Val107, 

Ala106, Leu162 and His305, moreover, it formed 

couple of hydrogen bonds with Asp300 and Glu233 

at distances of 2.94 and 2.41 Å, respectively (Figure 

5D), while 24-methylenecycloartanol exhibited a 

binding energy -7.10 Kcal/mol. It formed 15 

hydrophobic π-interactions with Ala198, Leu162, 

His305, Ile51, Val107, His101, Trp58, Tyr62, Trp59, 

and Leu165, additionally a hydrogen bond was 

obtained by interaction with Glu233 with a distance 

of 2.20 Å (Figure 5E). 

4. DISCUSSION 

Free radicals are highly unstable and include reactive 

chemical units with a specific property having one or 

more unpaired electrons45. Sources of free radicals in 

cells and their surroundings include a variety of 

substances such as ROS, smoking, chemicals, 

radiations, the creation of neutrophils and 

macrophages and industrial effluents. Numerous 

studies have demonstrated the significant role free 

radicals play in causing damage to DNA, lipids, and 

proteins, which can lead to a variety of diseases such 

rheumatoid arthritis, diabetes mellitus, and cancer46. 

Oxidative stress takes place when there is an 

imbalance between the body's antioxidant capacity 

and the quantity of free radicals.  

 

A class of metabolic diseases known as diabetes 

mellitus (DM) is characterized by hyperglycemia 

(increased blood glucose levels) and deficiency in the 

pancreatic synthesis or activity of insulin47. In 

general, Type 2 diabetes mellitus (T2DM) is the 

diagnosis for 90–95% of diabetic cases48. Obesity, 

insulin resistance and pancreatic β-cell dysfunction 

are the major signs of T2DM49,50. In addition to the 

pancreas, other organs were affected including the 

kidneys, liver, brain, stomach and eyes 51. 

  

During the first stages of the illness, the pancreatic β-

cells produce more insulin to counteract insulin 

resistance, which weakens and malfunctions the β-

cells and impairs insulin secretion, resulting in 

hyperglycemia52. It is becoming more obvious that 

oxidative stress and inflammation are the primary 

processes causing cellular damage in T1DM and 

T2DM diabetic complications53 
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Figure 2. In-vitro antioxidant activity of PEE1, PEE2 of D. decaryi and D. leptocheilos leaves and ascorbic acid 

(reference drug) using: DPPH radical scavenging activity (A) and ABTS radical scavenging activity (B). The 

results are expressed as mean ± SD (n=3). a: Statistically significant from the standard drug, b: PEE2 statistically 

significant from PEE1 at P < 0.05. 

 

A 

 

B 

 

Figure 3. In-vitro anti-inflammatory activity of PEE1, PEE2 of D. decaryi and D. leptocheilos leaves and 

indomethacin (reference drug) using: COX-1 (A) and COX-2 (B) inhibition activities. The results are 

expressed as mean ± SD (n=3). a: Statistically significant from the standard drug, b: PEE2 statistically 

significant from PEE1 at P< 0.05. 
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Table 3. IC50 values of PEE1, PEE2 of D. decaryi and D. leptocheilos leaves against DPPH, ABTS, COX-1, COX-2, and α-

amylase inhibition. 

 

Activity IC50 of Plant extract/ Standard 

1.Anti-oxidant PEE1 PEE2 Standard  

a. DPPH 29.8±0.62a µg/mL 28.5±1.43a µg/mL 38.72±0.26 µg/mL (Ascorbic acid) 

b. ABTS 173.98±8.23a µg/mL 12.68±1.08b µg/mL 10.65±0.81 µg/mL (Ascorbic acid) 

2. Anti-inflammatory  

a. COX-1 0.67±0.06 µM 0.7±0.01 µM 0.6±0.1 µM (Indomethacin) 

b. COX-2 0.049±0.001a µM 0.103±0.006a,b µM 0.079±0.001 µM (Indomethacin) 

3. Anti-diabetic 

α-amylase inhibitory activity 107.16±4.57a µg/mL 41.81±2.85a,b µg/mL 14.54±0.86 µg/mL (Acarbose) 

a Statistically significant from the standard drug, b PEE2 statistically significant from PEE1 at P < 0.05 using one-way ANOVA followed by 

Tukey’s multiple comparisons test. ANOVA: analysis of variance; SD: standard deviation. 

 

a
a

a
a

a

a

a

a

a

a
a

a

a,b
a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b
a,b

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 2 3.9 7.8 15.6 31.25 62.5 125 250 500 1000

%
 α

-a
m

y
la

se
 i

n
h

ib
it

o
r
y

 a
c
ti

v
it

y
 

Concentration µg/mL

PEE1

PEE2

Acarbose

Figure 4. In-vitro α-amylase inhibitory activity of PEE1, PEE2 of D. decaryi and D. leptocheilos leaves 

and acarbose (reference drug). The results are expressed as mean ± SD (n=3). a: Statistically significant 

from the standard drug, b: PEE2 statistically significant from PEE1 at P < 0.05. 
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Oxidative stress is a significant component in the 

development of insulin resistance and β-cell 

dysfunction54. Not only diabetes-related oxidative 

stress alters an enzymatic system, results in lipid 

peroxidation, impairs glutathione (GSH) metabolism 

and reduces vitamin C levels55, but also elevates the 

levels of pro-inflammatory proteins with infiltrated 

macrophages releasing inflammatory cytokines 

which in turn causes both local and systemic 

inflammation56 and is a known mechanism in the 

development of diabetes complications57. 

Non-steroidal anti-inflammatory drugs (NSAIDs) 

are used routinely in clinical management of 

inflammation58. It is believed that these drugs' mode 

of action is dependent on COX enzyme inhibition59. 

The cyclooxygenase enzyme (COX) has two primary 

isoforms: COX-1 and COX-2. Normal tissues 

contain the structural enzyme COX-1, which is 

responsible for preserving fundamental 

physiological processes like the stomach's 

cytoprotection and the kidneys' vasodilation. 

Conversely, COX-2 is an inducible enzyme; it is 

rarely produced in normal physiological conditions 

but is overexpressed in inflammation and tumors. 

COXs are key enzymes in the conversion of 

arachidonic acid to the pro-inflammatory mediators, 

prostaglandins and other eicosanoids. It was 

hypothesized that if COX-2 could be inhibited 

without inhibiting COX-1, many of the side effects 

associated with NSAIDs use could be avoided60. 

Furthermore, it has been documented that expensive 

and selective COX-2 inhibitors have side effects. 

Alternatively, medicinal plants can be used to create 

safer and less expensive medications61. 

It is commonly known that DPPH scavenging 

radicals have extraordinary scavenging power. The 

A B C 

D E 

Figure 5. 2D and 3D orientations of docking simulation for reference drug: Acarbose (A), α-Amyrin methyl ether 

(B), Arundoin (C), Cycloartenol (D) and 24-Methylenecycloartanol (E) against human α-amylase protein (PDB 

2qv4). 
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current study found that the two species under 

investigation had a higher degree of DPPH 

quenching potential. This suggests that PEE might 

have advantageous antioxidants that can eliminate 

free radicals from the body and minimize the 

potential of oxidative stress. 

 

Terpenes, for example, are recognized components 

of plant tissues that possess remarkable biological 

activities, including anti-inflammatory, anti-viral, 

anti-bacterial, antifungal, anti-hyperglycemic, 

spermicidal, anti-allergic, and cardiovascular 

protective properties62. They are classified based on 

the number of carbons to monoterpenes, 

sesquiterpenes, diterpenes, tri- and tetraterpenes. 

They are highly effective in treating disorders linked 

to oxidative stress through the modulation of the 

endogenous antioxidant system and control ROS 

scavenging pathway63.  

 

Numerous in-vivo and in-vitro investigations have 

confirmed their multidirectional features: anti-

oxidant64, anti-inflammatory65, anti-diabetic66, anti-

cancer67, anti-atherosclerotic68 and antiviral69. Since 

triterpenes represent the majority of the USF in this 

investigation, their presence in the extracts may have 

contributed to the biological activities that were 

examined. Squalene, one of the identified 

constituents, is the biological precursor for the 

synthesis of secondary metabolites such as sterols, 

hormones, or vitamins70 and other triterpenes71,72.  

 

Squalene -the most abundant constituent in USF1and 

USF2 (18.23 % and 17.99 %)- possessed a strong 

antioxidant activity which was attributed to the 

abundance of double bonds in its structure73. It was 

also found that squalene exerted an anti-

inflammatory effect and could be used as UV 

protective agent in cosmetic products by the 

reduction of ROS levels74. Widyawati et al stated the 

in-vivo and in-silico assays of the anti-diabetic 

activity of squalene75,76. 

 

Phytol, is an acyclic diterpene that possessed strong 

anti-oxidant activity that may be due to the hydroxyl 

group (OH) present in the molecule which transforms 

free radicals into less reactive species by donating 

hydrogen atoms with an unpaired electron (H∙)77,78. 

Silva et al suggested that phytol reduced 

inflammation by preventing neutrophil migration, 

which was partially attributed to decreased levels of 

TNF-α and IL-1β as well as oxidative stress79. It 

might be useful in treating metabolic diseases and 

insulin resistance that co-exist with diabetes and/or 

obesity, using an insulin-resistant diabetic rat model, 

the in-vivo effect of phytol and its modulatory 

activity on pioglitazone was evaluated80.  

 

Additionally, the anti-diabetic biological action of 

phytol was validated by molecular docking studies of 

phytanic acid, an active metabolite of phytol, which 

demonstrated good alignment with the experimental 

results. Lower dosages of anti-diabetic medications, 

such as thiazolidinediones (TZDs), could be used 

with phytol to preserve the entire therapeutic efficacy 

with fewer side effects80. Several agonists commonly 

used to treat T2DM was shown to be activated by 

phytanic acid in previous in-vitro investigations81-83. 

β-sitosterol, stigmasterol, campesterol, stigmastanol, 

and campestanol are some of the major phytosterols 

that have been researched for their pharmacological 

relevance.  A study found that β-sitosterol had an 

anti-inflammatory effect when BV2 cells were 

exposed to LPSby lowering the production of pro-

inflammatory markers as cyclooxygenase-2 (COX-

2), tumor necrosis factor-α (TNF-α), inducible nitric 

oxide (iNOS), and interleukin-6 (IL-6)84. 

Additionally, it was discovered to be a strong α-

amylase inhibitor in the treatment of diabetes 

mellitus85. 

 

Cycloartenol possessed numerous pharmacological 

properties such as anti-oxidant, anti-inflammatory, 

antitumor, antibiosis and anti-Alzheimer’s disease86. 

According to Nair et al, cycloartenol and 24-

methylenecycloartanol had the ability to lower blood 

sugar levels. Even at greater dosages, they did not 

cause hypoglycemia shock and instead kept blood 

sugar levels near to normal control levels. 

Additionally, they possessed the ability to restore the 

altered serum biochemical parameters of diabetic 

animals to a normal state87. 

 

The computational (in-silico) technique has been 

widely employed as an effective tool for virtual 

biological screening during the drug design and 

discovery phases. Using this procedure, natural 

compounds' estimated biological activities and 

affinities are assessed. Through a number of recent 

applications, the nature of targeted locations and the 

identification of various compounds as activators or 

inhibitors have been better understood. In this study, 

some of the identified components were evaluated 

for their anti-diabetic activity through molecular 

docking simulation with human α-amylase protein. 

AutoDock Vina, molecular docking software, was 

used to simulate the binding modes of human α-

amylase protein with some selected 

phytoconstituents (ligands) based on their 

abundances in both USF, acarbose the anti-diabetic 



 

 

 

 

El -Dakroury et al, Azhar Int J Pharm Med Sci 2025; Vol 5 (1): 157-176. 

 

170 

https://aijpms.journals.ekb.eg/ 

standard drug and the co-crystalized ligand was used 

for comparison. 

 

Acarbose (ΔG = -8.98 Kcal/mol) formed 13 

hydrogen bonds with Ala106, Asn105, Thr163, 

Gln63, Trp59, His299, Asp300, Glu233, Arg195, 

and His201. Docking interaction revealed 

cycloartenol and 24-methylenecycloartanol were the 

most well nested compounds into the active site of 

human α-amylase protein. Cycloartenol with  

binding energy (ΔG = -7.55  Kcal/mol) formed 10 

hydrophobic π-interactions with Tyr62, Leu165, 

Trp59, Val107, Ala106, Leu162 and His305, 

moreover it formed couple of hydrogen bonds with 

Asp300  and Glu233 at distances of 2.94 and 2.41 

Å, while 24-methylenecycloartanol exhibited a  

binding energy (∆G = -7.10 Kcal/ mol) formed 15 

hydrophobic π-interactions with Ala198, Leu162, 

His305, Ile51, Val107, His101, Trp58, Tyr62, Trp59, 

and Leu165, additionally a hydrogen bond was 

obtained by interaction with Glu233 with a distance 

of 2.20 Å, respectively.  

 

The present in-silico molecular based docking study 

matches the previous study that took place by Nair et 

al and can give attention to these two compounds and 

their probable efficacy in the treatment of T2DM87. 

Both α-amyrin methyl ether and arundoin exhibited 

a binding energy -6.32 Kcal/mol that revealed the 

good binding affinities of them to human α-amylase 

protein giving them a chance for further investigation 

for their anti-diabetic activity. α-Amyrin methyl 

ether showed 11 π-hydrophobic interactions with 

Ala106, Leu165, Trp59, Trp58 and His305, while 

arundoin showed 7 π-hydrophobic interactions were 

observed with Trp59, His305, Leu165, and Val107.  

Several studies indicated that fatty acids anti-

inflammatory capabilities were connected to the 

reduction of TNF-α, IL-1α, IL-1β, and IL-6 levels88. 

It was established that the saturated fatty acid 

palmitic acid could affect T cells in particular or 

inhibit phospholipase A2, which was responsible of 

releasing lysophospholipids and arachidonic acid, 

the precursor to potent inflammatory mediators like 

prostaglandins and leukotrienes89. Oleic acid, 

sometimes referred to as Omega 9, is a fatty acid that 

had the ability to reduce the expression of 

inflammatory molecules and inhibited endothelial 

cell stimulation90. Furthermore, in LPS-stimulated 

microglial cells, oleic acid suppressed the release of 

pro-NO and prostaglandin E2 mediators as well as 

the synthesis of NOS and COX-2. The anti-

inflammatory effect of oleic acid may be due to its 

role in ROS suppression 91. In-silico molecular 

docking and dynamics studies indicated that palmitic 

and oleic acid are potential α-amylase enzyme 

inhibitors92. 

 

Another saturated fatty acid, tetradecanoic acid 

showed maximum of 83% inhibition towards α-

amylase enzyme at 1.12 μM93, so its presence in an 

appreciable amount in PEE2 (31%), in-addition to 

arundoin (5.44%) and cycloartenol (2.32%) could be 

one of the reasons of its higher anti-diabetic activity 

than PEE1. PEE1 exhibited significant COX-2 

inhibitory activity than PEE2 and indomethacin 

which gives a chance for this extract to be further 

analyzed. 

5. CONCLUSIONS 

This study revealed that petroleum ether extracts of 

the studied plants possess secondary metabolites, 

which are possibly responsible for its anti-oxidant, 

anti-inflammatory and anti-diabetic properties. The 

in-silico molecular docking study showed that α-

amyrin methyl ether, arundoin, cycloartenol and 24-

methylenecycloartanol, can inhibit α-amylase 

enzyme, so these compounds can be used in 

developing new drugs that can aid in the treatment of 

T2DM. Further studies including in-vivo studies are 

essential to assess the efficacy of the bioactive 

compounds as drug candidates for T2DM. 
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