Compound 1:	3, 4, 5- trihydroxy-benzoic acid (gallic	HO
	acid).	
		но он
Compound 2:	Methyl gallate.	H3C0O
		но
		он
Compound 3:	6- <i>O</i> - [Galloyl 4- methyl ether]-(α/β)-D-	HO
	glucopyranose	H ₃ CO HO CO
		HO OH HO OH
Compound 4:	3, 5-di-O-galloylquinic acid butyl ester.	
		OH
		ИС ОС ОСН
		A OH
Compound 5:	3.4.5-tri- <i>O</i> -galloylquinic acid butyl ester	он он
compound of		HOCOH
		OH OH
		H _y C B OH
		но
Compound 6:	1,3,4,5-tetra-O-galloylquinic acid butyl	но он он
	ester.	D HO C OH
		OF OF OH
		H ₂ C Or H Con
		A
		но он
Compound 7:	Two isomers :3-O-galloyl quinic acid	
	butyl ester and 4-O-galloyl quinic acid	H ₃ CO'OH OH OH
	butyl ester	H ₃ CO
		но он
Compound 8:	Austrobailignan 1	
Composed Or	R sitestard	24
Compound 9:	p-snosteroi	¹⁹ 20 22 26
		$29 \begin{bmatrix} 18 & 21 \end{bmatrix} \begin{bmatrix} 25 \\ 17 & 27 \end{bmatrix}$
		HO 3 5 7

Supplementary table (1): Isolated compounds from butanol fraction of K. elegans twigs:

Carbon number –	Compound 4		Compound 5		Compound 6	
	δ ¹³ C	δ ¹ H	δ ¹³ C	δ ¹ H	δ ¹³ C	δ ¹ H
1	74.30		74.59		74.30	
2	35.64	2.07, <i>m</i>	35.64	2.10, <i>m</i>	34.72	2.45, m
3	67.96	5.38, m	68.50	5.85, m	68.28	5.72, m
4	72.38	3.92, m	73.24	5.32, brd	72.30	5.42, bra
5	68.91	5.38, m	71.82	5.54, m	69.50	5.72, m
6	38.91	2.48, m	38.91	2.34, <i>m</i>	39.34	2.75, m
7	173.43	,	174.43	,	172.50	,
8	60.39	3.39, <i>t</i>	60.39	3.37, <i>t</i>	60.30	3.36, <i>t</i>
9	38.82	1.38, m	38.82	1.29, m	39.17	1.29, m
10	18.65	1.30, <i>m</i>	18.66	1.28, <i>m</i>	18.70	1.28, m
11	13.87	0.87, <i>t</i>	13.89	0.85, <i>t</i>	13.92	0.87, <i>t</i>
1A	118.70		118.75		118.94	
2A	108.80	6.88, <i>s</i>	108.71	6.89, <i>s</i>	108.83	6.80, <i>s</i>
3A	145.44	-	145.41	-	145.51	-
4 A	138.93		138.57		138.58	
5A	145.44		145.41		145.51	
6A	108.80	6.88, <i>s</i>	108.71	6.89. s	108.83	6.80, <i>s</i>
7A	164.79	,	164.92	,	165.10	,
1B	119.30		119.04		118.94	
2B	108.84	6.91, <i>s</i>	108.78	6.92, <i>s</i>	108.83	6.82, <i>s</i>
3B	145.56		145.50		145.56	
4B	138.96		138.76		138.58	
5B	145.56		145.50		145.56	
6B	108.84	6.91, <i>s</i>	108.78	6.92, <i>s</i>	108.83	6.82, <i>s</i>
7 B	165.14		164.99	,	165.19	,
1C			119.57		119.24	
2 C			108.96	6.95, <i>s</i>	109.18	6.85, <i>s</i>
3 C			145.50		145.60	
4 C			138.82		139.50	
5C			145.50		145.60	
6C			108.96	6.95, <i>s</i>	109.18	6.85, <i>s</i>
7C			165.30		165.48	
1D					119.24	
2D					109.18	6.88, <i>s</i>
3D					145.60	
4D					139.50	
5D					145.60	
6D					109.18	6.88, <i>s</i>
7D					165 48	-

Supplementary table (2): ¹H NMR and ¹³C NMR spectroscopic data for compounds 4 – 6 in DMSO-*d6*:

Position	δ ¹³ C	δ ¹ H			
1	41.00	4.48 (<i>d</i> , <i>J</i> =5)			
2	45.94	2.75 (<i>m</i>)			
3	31.5	2.97 (<i>m</i>)			
4	31.6	α : 3.31 (<i>dd</i> , <i>J</i> = 16, 6)			
		β: 2.75 (<i>m</i>)			
5	108.50	6.38 (s)			
6	146.32				
7	145.91				
8	109.82	6.48 (s)			
9	130.67				
10	128.97				
11	71.51	α : 4.40 (<i>dd</i> , $J = 9, 8$)			
		β : 3.94 (<i>dd</i> , <i>J</i> = 9, 8)			
12	174.88				
ſ	135.90				
2`	104.18	6.06 (<i>d</i> , <i>J</i> = 1.5)			
3`	147.76				
4`	133.42				
5`	142.15				
6	110.80	6.76 (<i>d</i> , <i>J</i> = 1.5)			
13	101.05	5.95 (s)			
14	56.31	3.74 (s)			
15	100.91	5.908, 5.905 (ABq, J=1.5)			

Supplementary table (3): ¹H and ¹³C-NMR spectral data of compound 8 in DMSO-*d6*:

Position	δ ¹ H	δ ¹³ C
1.		37.5
2.		31.9
3.	3.53 (<i>m</i> , 1H)	72.0
4.		42.5
5.		140.9
6.	5.27 (<i>t</i> , 1H/ <i>J</i> =6.4 Hz)	121.9
7.		32.1
8.		32.1
9.		50.3
10.		36.7
11.		21.3
12.		39.9
13.		42.6
14.		59.19
15.		26.3
16.		28.5
17.		57.13
18.		36.3
19.	0.95 (<i>d</i> , 3H/ <i>J</i> =6.5 Hz)	19.2
20.		34.2
21.		26.3
22.		46.1
23.		23.3
24.	0.85 (<i>t</i> , 3H/ <i>J</i> =7.2 Hz)	12.2
25.		29.4
26.	0.88 (<i>d</i> , 3H/ <i>J</i> =6.4 Hz)	20.1
27.	0.74 (<i>d</i> , 3H/ <i>J</i> =6.4 Hz)	19.6
28.	0.68 (s, 3H)	19.0
29.	1.05 (s, 3H)	12.0

Supplementary table (4): ¹H &¹³C- NMR spectral data of compound 9 DMSO-d6:

Treatment		•			
			IC 50 (μg)		
MCF-7 cell lines:					
Supplementary table (5): IC ₅₀ (50% inhibition	concentration)	of tested drugs	against A-549,	HC1-116 and

Supplementary table	(5): IC ₅₀ (50%	inhibition (concentration)	of tested	drugs	against A-549	, HCT-11	6 and
MCF-7 cell lines:								

	1050 (µg)					
Treatment	A-549	HCT-116	MCF-7			
Butanol extract	>100	>100	>100			
Austrobailignan 1	>100	77.4	40.4			
Methyl gallate	> 100	95.5	48.6			

Figure (1): Standard curve of gallic acid for determination of total phenolic content

Figure (2): Effects of the tested fractions against brine shrimp lethality

Figure (3): Effects of tested drugs against A-549 cell line

Figure (4): Effects of tested drugs against HCT-116 cell line

Figure (5): Effects of tested drugs against MCF-7 cell line